

SWARM BASED IMPLEMENTATION

OF A VIRTUAL DISTRIBUTED DATABASE

SYSTEM IN A SENSOR NETWORK

THESIS

Wen Chian Lee

AFIT/GCE/ENG/04-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GCE/ENG/04-06

SWARM BASED IMPLEMENTATION OF A VIRTUAL DISTRIBUTED
DATABASE SYSTEM IN A SENSOR NETWORK

THESIS

Presented to the Faculty

 Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

 Air Education and Training Command

 In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Wen Chian Lee, BS

March 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFlT/GCE/ENG/04-06

SWARM BASED IMPLEMENTATION OF A VIRTUAL DISTRIBUTED
DATABASE SYSTEM IN A SENSOR NETWORK

Wen Chian Lee, BS

Approved:

.^t^

X MA/t(/'4
Dft©riry B LamontjCi^iairman) date

i/lJAij/'^^^l^^^^ i? /v- ^q
Dr (L :Col) Michael L Talbert (Member) date

^4 •:^^^7—^ TX AAAR g^H

J

Dr Gilbert L Peterson (Member) date

Dr MSnry B Potoczny (Membe^ date

 iv

Acknowledgments

 I would like to express my sincere appreciation to my parents for their

unwavering faith in me, their timely encouragement when I feel down, and their

continuous support. I also thank my brother, whose ingenious humor always brings more

than a smile on my face.

 My special gratitude goes to Mary Jane McCormick, Office Manager of the

Electrical and Computer Engineering Department. Her kindness and considerations have

ensured that every step of my experience at AFIT both inside the classroom and outside

has been smooth. Her seemingly all-knowing and ubiquitous ability has been a blessing.

I would not have completed my graduate education at AFIT without her. I would like to

thank my classmates, in particular, Daniel Swayne and his family, Jamie Carsten, Dan

Newberry, Duane Sorgaard, and Wendell Fox. Together, because of them, even the

bitterly cold winter at Ohio became bearable. At AFIT, a school where even the walls

started to bleed at the ninth week into the quarter (Winter03 Blg640), I found fellow

classmates were valuable assets in this academic challenging environment.

 In addition, let me extend my gratitude to the technical support professionals,

Jim Gray and Dave Doak, for their assistance in dealing with various technical issues;

especially Jim Gray, whose editorial help contributed to the completion of this document.

 Lastly, special thanks to my thesis advisor Dr. Gary B. Lamont and committee

member Dr. Michael L. Talbert.

 v

Table of Contents

 Page

Acknowledgments... iv

List of Figures ... viii

List of Tables .. ix

Abstract ... xi

I. Introduction.. 1

1.1 Sensors on UAVs.. 3

1.2 Ad Hoc Network ... 5

1.3 Research Goal and Objectives .. 6

1.4 Thesis Outline ... 8

II. Background .. 10

2.1 From Data Collection to Information Retrieval.................................. 10

2.2 Distributed Database on the UAV Communication Network............. 18

2.3 Why Distributed Database? .. 19

2.4 Distributed Processing .. 24

2.5 Image Query Processing Strategies .. 29

2.6 Summary ... 34

 vi

III. Query Design/Structures ... 35

3.1 Querying Physical Space in a Networked Environment..................... 35

3.2 Capabilities of a Sensor Database... 38

3.3 Sensor and Data Representation ... 39

3.4 Networked Sensor Database Design... 42

3.5 Summary ... 47

IV. Implementation/Detailed Design of Experiments... 49

4.1 Virtual Database.. 49

4.2 Query Semantics ... 51

4.3 Performance Measures.. 54

4.4 Experiment Methodology ... 57

4.5 Other Sensor Scenarios ... 65

4.6 Summary ... 66

V. Results and Analysis .. 67

5.1 Type of Query ... 67

5.2 Database Size .. 69

5.3 Query Results in Space and Time... 71

5.4 Summary ... 76

VI. Conclusions and Future Work .. 78

 vii

6.1 Summary and Conclusions ... 78

6.2 Research Contribution .. 80

6.3 Future Work .. 81

Appendix A. Decentralized Sensor Fusion – Target Tracking and Target Recognition

.. 83

Appendix B. Application of the COUGAR Sensor Database Project on Unmanned

Aerial Vehicles... 87

Appendix C. Simulation Input .. 91

C.1 Sensor Database Simulator Interface .. 91

C.2 Swarm Simulator Settings... 92

Appendix D. Experiment Settings and Output.. 94

D.1 Query Complexity Test... 94

D.2 Data Load Test.. 95

D.3 Effectiveness Test ... 96

Bibliography... 101

 viii

List of Figures

 Figure Page

Figure 1 Time line on the effect of information technology in war.................................... 2

Figure 2 OODA Loop .. 11

Figure 3 Micro Air Vehicle- Black Widow .. 23

Figure 4 A mathematical model of a wireless network .. 27

Figure 5 Process flow for image processing in ImageMap... 30

Figure 6 Feature-based multisensor data fusion system ... 32

Figure 7 Graph of database system response time and database size 71

Figure 8 Graph of sensor density and number of observations .. 73

Figure 9 Graph of sensor density and number of reporting points 73

Figure 10 Graph of number of observations and time .. 75

Figure 11 Graph of number of reporting points and time... 76

Figure 12 Sample simulation query output... 92

 ix

List of Tables

 Table Page

Table 1 UAV Construction Properties. ... 4

Table 2 Summary of approaches for formulating image queries...................................... 33

Table 3 Existing Wireless Systems Standards .. 38

Table 4 Experimental variable and metrics .. 60

Table 5 Parameters in computing system delay.. 61

Table 6 Query complexity and response time... 68

Table 7 Query type and response time.. 69

Table 8 Data store size and response time .. 71

Table 9 Summary of observations made in 90 time units... 72

Table 10 Summary of number of positions of observations in 90 time units 72

Table 11 Summary of observations made with 75 sensors... 75

Table 12 Summary of number of points of observations made with 75 sensors 75

Table 13 Parameter setting in param.txt file for swarm simulations 93

Table 14 Parameter setting for distributed sensor database simulation in query complexity

test ... 94

Table 15 Queries used in complexity test ... 94

Table 16 Query inputs in data load test .. 96

Table 17 50 random grid points on a 20x20 grid.. 96

 x

Table 18 Runs for 15 sensors with 90 time units.. 97

Table 19 Runs for 30 sensors with 90 time units.. 97

Table 20 Runs for 45 sensors with 90 time units.. 98

Table 21 Runs for 60 sensor with 90 time units ... 98

Table 22 Runs for 75 sensors with 90 time units.. 98

Table 23 Runs for 75 sensors with 180 time units.. 99

Table 24 Runs for 75 sensors with 270 time units.. 99

Table 25 Runs for 75 sensors with 360 time units.. 100

Table 26 Runs for 75 sensors with 450 time units.. 100

 xi

AFIT/GCE/ENG/04-06

Abstract

The deployment of unmanned aerial vehicles (UAVs) in recent military

operations has received much media attention. Their success in carrying out surveillance

and combat missions in sensitive areas has been trumpeted. An area of intense research

has been on controlling a group of small-sized UAVs to carry out reconnaissance

missions normally undertaken by large UAVs such as Predator or Global Hawk. A

control strategy for coordinating the UAV movements of such a group of UAVs adopts

the bio-inspired swarm model to produce autonomous group behavior.

This research proposes establishing a distributed database system on a group of

swarming UAVs, providing for data storage during a reconnaissance mission. A

distributed database system model is simulated treating each UAV as a distributed

database site connected by a wireless network. In this model, each UAV carries a sensor

and communicates to a command center when queried. Drawing equivalence to a sensor

network, the network of UAVs poses as a dynamic ad-hoc sensor network.

 The distributed database system based on a swarm of UAVs is tested against a set

of reconnaissance test suites with respect to evaluating system performance. The design

of experiments focuses on the effects of varying the query input and types of swarming

UAVs on overall system performance. The results show that the topology of the UAVs

has a distinct impact on the output of the sensor database. The experiments measuring

system delays also confirm the expectation that in a distributed system, inter-node

communication costs outweigh processing costs.

 1

SWARM BASED IMPLEMENTATION OF A VIRTUAL DISTRIBUTED
DATABASE SYSTEM IN A SENSOR NETWORK

I. Introduction

The wide scale employment of remotely controlled or autonomous unmanned

aerial vehicles (UAVs) is no longer a science fiction. The development in both

aeronautic control technology and wireless communications have made unmanned aerial

vehicles that require little human supervision flying in the sky a reality. A true story

reported by Richard J. Newman on Air Force Magazine Online is:

Important parts of Operation Iraqi Freedom were carried out by remote control.

In the first week of Gulf War II, a Marine reconnaissance team near Basra reported it was surrounded by
enemy troops and in need of reinforcements. The quickest way in was by helicopter, but the nearby terrain
was unfamiliar.

Out went an urgent request for U-2 and Predator surveillance aircraft to scout possible landing zones.

Five thousand miles away, at Langley AFB, Va., USAF Capt. Bob Lyons turned to the task. He and dozens
of his colleagues had been set up in 27 chilly trailers lashed together to form a distributed ground station
(DGS), which monitored minute details of the war. Lyons started redirecting a U-2 that was already airborne
over Iraq. The U-2 got onto the scene and snapped its first pictures a mere 20 minutes after the original call
for help.

Intelligence experts at Langley and another base (unnamed here, at Air Force request) quickly analyzed the
photos and then transmitted them via satellite to the combined air operations center (CAOC) in Saudi Arabia.
There, US planners reviewed the images and began to designate landing zones and prepare for the mission.

A few minutes later, Lyons helped direct a Predator unmanned aerial vehicle to the scene of the action.
Specialists looking through the UAV’s camera located the Marines and scanned the ground for signs of any
Iraqi activity near the potential landing zones. The UAV relayed real-time video to Langley, the CAOC, and
several other posts.

The long-distance linkup paid off: Two hours after the first Marine SOS, reinforcements were on their way to
the LZs. [45]

 2

The key in information warfare is to integrate information collected from all

sources (intelligence, diplomatic channel, reconnaissance activities, and mass media) and

to have them available to the right person at the right time.

From experiences in recent encounters on the battlefield, the Department of

Defense understands the importance of information superiority. Information and the

technology that allows rapid information flow are recognized to “impact every facet of

military operations [73].” Figure 1 shows the impact of information technology in war

over time [43]. The flow of the right information to decision makers is critical in the

overall command and control. As demonstrated in the excerpt above, information

technology enables raw data to travel far across distance and hierarchy to be translated

into useful information for the decision maker to initiate corresponding military

maneuvers.

Information Technology &
Its Impact on the Warfighter

Cognitive Tools/ Cognitive Tools/
Artificial IntelligenceArtificial Intelligence

Data
Transfer

Rate
Soldiers to

Cover 10 Sq.
Kilometers

Civil WarCivil War

3 Words
Per

Minute
38,830

Soldiers

World War IIWorld War II

66 Words
Per

Minute
300 300

SoldiersSoldiers

Gulf WarGulf War

192,000
Words Per

Minute
24

Soldiers

Future WarFuture War

1.5 Trillion
Words Per

Minute
3

Soldiers

Time Line TelegraphTelegraph TeletypeTeletype ComputerComputer

18651865 19141914 19451945 19911991 20102010

World War IWorld War I

30 Words
Per

Minute
4,040 4,040

SoldiersSoldiers

VideoVideo--
TeleconferencingTeleconferencing

Figure 1 Time line on the effect of information technology in war

 3

In the push to reduce casualties in the war, developing unmanned robots that

perform tasks formerly done by humans is a hot topic of research. As more UAVs

participate in real combat, more research [41][30][3] in this area is underway.

Historically [36], two of the major military tasks for UAVs have been target

identification and intelligence gathering. In these tasks, cameras or sensors for collecting

data are mounted on the unmanned aerial vehicles. Some of the possible data collected

are aperture radar images, infrared images, or digital images [3]. The Department of

Defense spends millions of dollars pushing the technology advancement on UAV related

research ranging from automatic collision avoidance, and integrating the propulsion

system into the airframe for reducing size, to autonomous mission control capabilities [3].

Recently, a new direction in the research of UAV control technology has been swarming

UAVs. This research builds on the concept of UAV swarms and looks into deploying a

distributed database system in such a swarm network.

1.1 Sensors on UAVs

Small, wireless sensors such as MICA sensors developed by Crossbow [18] found

applications in many areas ranging from wireless sensor networks to environmental

monitoring. Each sensor is 2.25x1.25x0.25 (inch) in size and weighs 0.7oz [18].

Equipped with a multi-channel radio transceiver and various sensing capabilities, these

sensors operate on battery power using 8mA of current when in active mode and less than

15µA in sleep mode [18]. In addition, MICA sensors are reprogrammmable through

wireless remote control. Their small size allows them to be embedded in other

equipment. They can also interact with various onboard control systems, functioning

similar to the way thermostats help maintain the temperature of an office building.

 4

 Current UAVs are both scare and in high demand. The cost objective of Global

Hawk and DarkStar UAVs programs were approximately $10 million apiece for a fly-

ready vehicle [19]. Although the cost is only a fraction of that of a manned aircraft,

inspecting the costs of an array of UAVs published by the United Stated Department of

Defense UAV Roadmap Briefing in Table 1 [19] shows that UAVs are not cheap. Air

Combat Command chief Gen. Hal Hornburg at an Air Force Association conference in

February 2003 stated plainly that UAVs are definitely not disposable items [49].

Building numerous small, inexpensive unmanned aerial vehicles provides the solution.

Multiple sensors offer adequate redundancy for target identification. These UAV sensors

can be either of the same type or operate at different frequencies and resolution to

complement one another. It is both intuitive and experimentally proven [35] that fused

information from two sensors more reliably identifies targets than one sensor. Also

because of the redundancy of sensors, failure of any sensor only marginally impacts the

overall intelligence collecting ability. In addition, their reduced cost and complexity

makes them easier to replace.

Table 1 UAV Construction Properties.

System Aircraft Cost
FY02 $*

Aircraft
Weight, lb*

Payload
Weight, lb

System Cost
FY02 $

Number of
Acft/System

Predator $1,700,000 1135 450 $30,000,000 4
Pioneer $650,000 307 75 $7,000,000 4
Hunter $1,200,000 1170 200 $20,000,000 8
Global
Hawk

$20,000,000 9200 1950 $57,000,000 1

Shadow 200 $325,000 216 60 $6,200,000 4
Fire Scout $1,800,000 1502 200 $14,200,000 3
Dragon Eye $35,000 3.5 1 $120,000 3
*Aircraft costs are minus sensor costs, and aircraft weights are minus fuel and payload capacities. Hard ware costs,
including GFE, are used.

 5

1.2 Ad Hoc Network

A network of UAVs is more than a wireless network of sensors. UAVs are

mobile units; the relative positions of individual entity are not fixed. Conventional

routings lack the flexibility offered by an ad-hoc network in several aspects. In fact,

transmissions in dynamically moving sensors or swarming UAVs entail the use of an ad-

hoc network. An ad-hoc network refers to a local area network with dynamic network

components that form a temporary network [55]. Ad-hoc networks stand out in their

ability to reconfigure and adapt to the current availability of network devices. A protocol

using dynamic source routing in ad hoc networks that “adapts quickly to routing changes

when host movement is frequent, yet requires little or no overhead during periods in

which hosts move less frequently” is presented in [32]. Different techniques in dynamic

routing of messages to mobile hosts have been suggested [32][50][77]. There are two

principal reasons for using ad-hoc networks as the communication medium.

First, no established infrastructure or central administration is available. A group

of UAVs can be summoned to a battlefield on a short notice where they communicate via

wireless network, perform team collaboration through distributed control. In this case, no

prior arrangements for communication routes are made and the nodes are highly mobile.

An ad-hoc network is designed to adjust to the change of topology or the lack of defined

topology among nodes.

Second, the unpredictability of the environment introduces extra challenges to the

network communication. Some nodes may become temporarily unreachable due to

interferences from terrain, electro-magnetic noises, or malfunctions. In addition, mobile

hosts may move out of range for wireless signals. Due to the robust property of ad-hoc

 6

networks, if a router goes down or out of reach, an ad-hoc network is able to find another

path quickly.

1.3 Research Goal and Objectives

Automated tools, like sensors, act as monitoring systems constantly reading new

data from the environment. This data accumulates over time and the volume of data

grows rapidly when a number of sensors are deployed, especially for image data, the size

of which is usually large. As the amount of data increases, handling data within the

system becomes increasingly difficult. Using a database is a structured way to organize

data and facilitate data searching [28], information retrieval, or pattern recognition [40].

Pattern recognition methods, such as data mining in the database, allow users to make full

utilization of the data at hand.

This research imposes a distributed database on the structure of an existing UAV

communication network. Because of the decentralized nature of swarms, a distributed

database consisting of the individual swarming UAVs is a convenient way for managing

data storage. A distributed database can be defined as

A database that consists of two or more data files located at different sites on a computer network. Because
the database is distributed, different users can access it without interfering with one another. However, the
DBMS must periodically synchronize the scattered databases to make sure that they all have consistent data
[72].

The database sites (UAVs) that compose the distributed database system can be

physically scattered over a large area through network connections. In spite of the

physical locations, they are logically considered a large single database. In a distributed

database system, the application processor software at each database site is responsible

for processing requests that require access to more than one site, offering the impression

of a single system. In a distributed database system made of UAVs, accessing remote

 7

database sites can be achieved through wireless network connection. The database

system then combines information from multiple sites (UAVs) into a single resulting set,

which is returned to the site where the query originated.

This thesis effort investigates embedding a distributed database system in the

system components of a group of information-collecting unmanned aerial vehicles

(UAVs). The movement of UAVs is based on the existing behavior model of swarming

UAVs developed by Kadrovach [33]. It is assumed that each UAV has some processing

power and local storage capability to manage the processing and storage requirements of

a distributed database on top of the resources consumed by swarm and navigation control.

Following the swarm model of autonomous UAVs in [33], a swarm is assumed to

maintain its altitude once airborne, constraining the swarm movement in two dimensions.

The goal of this research is to study the possibility of establishing a distributed database

system on a swarm of sensor UAVs and what it offers both in terms of system efficiency

and effectiveness (information retrieval). The following objectives are set forth to

facilitate achieving this goal:

1. To develop and analyze the input query conditions and the swarm property

of a distributed sensor database system and their influence on system

performance.

2. To design sets of test suites for assessing system performance.

3. To examine the relative effects of variables affecting the output of the

system (sensitivity analysis).

The collaboration amongst UAVs in an operational environment has not been widely

employed to date. In this research effort, it is assumed that the UAV network can be

 8

easily scaled to a large size, which is one of the properties of a distributed database

discussed in chapter II. With the vision of scaling swarms of sensor UAVs to large sizes,

this research takes the following approach:

• To understand the technology and issues associated in developing a distributed

database system on mobile sensors.

• To develop a model of a distributed database system with rudimentary database

operation support.

• To design the system model to account for major contributors of system latencies

such as inter-processor communication and load and their relative contribution.

• To design and analyze results of experiments with respect to the principles stated

in Chapter IV and inspect how they conform to the general expectations of a

distribution database system.

1.4 Thesis Outline

The document is organized as follows: Chapter II gives background descriptions

of the problem domain, pointing out application specific properties. Previous research

efforts and proposals relating to the problem domain along with potential solutions are

included. This provides the necessary information to understand the swarm-based

distributed database system presented. Chapter III addresses the major concepts and

designs of the system model. A set of system functionalities is listed along with data

representation paradigms. The design model of the distributed database system on UAVs

is outlined, enabling further analysis on the model. Chapter IV presents detailed

implementation descriptions and discusses the process and approaches for conducting

experiments. Relevant performance evaluation metrics are defined and considered for

 9

examining the test results. Chapter V discusses the outcome of the experiments and

presents the test analysis. The effects of tested variables on system performance with

respect to the defined evaluation measures are inspected. Chapter VI presents a summary

of the research concluding the results analysis and offers suggestions for future work.

 10

II. Background

This chapter gives an overview of the background information for using a

distributed database in a network of swarming UAVs. Related research in areas of sensor

network, swarming, database data storage for efficient retrieval, and search methods for

finding optimal solutions in constrained search space are discussed. The discussion

focuses on the issues involved in the database aspect of airborne unmanned flying

machines used for either reconnaissance or surveillance missions. The discussion then

gives a closer look at distributed database systems and lists some of the application

requirements and system constraints identified by previous researchers.

2.1 From Data Collection to Information Retrieval

In this information age, technology has revolutionized the structure of modern

warfare. Since World War II through the military campaign in Iraq, superiority in war is

not achieved in the mass –the number of soldiers in the battlefield, but through

information and information-based technology. Examples of using information

technology in the battlefield proliferate: autonomous GPS guided missiles, strategic

planning based on satellite images of adversary territory, GPS locating devices, etc.

The popularly recognized model proposed by Col John Boyd, USAF (Ret) for

Command and Control (C2) activities in the military decision making process in the

theater is known as the Observe Orient Decide Act (OODA) Loop in Figure 2 [70][71].

Observation includes gathering factual data from sensors or other means in the

battlefield. Knowledge and useful information is extracted from the data at hand and is

supplied to the decision makers. Taking all sources of information into consideration,

 11

decisions are made. Based on the decisions, actions are taken that directly or indirectly

affect the condition of the battlefield. More information about the OODA loop concept is

found in [44][47]. The surveillance activities in the battlefield again provide feedback

and confirm the effects of their actions. The OODA loop repeats itself [71].

Figure 2 OODA Loop

 Our discussion of sensors network and storage structure for information search

falls under observe and orient in the OODA loop. The raw data from one sensor by itself

does not have much meaning without putting it in context. Piecing together data from a

set of sensors may reveal the layout of adversary forces. Analogously, images of an area

at one moment in time may not be informative. Comparing several snapshots at different

times may indicate the movement of certain objects of interest. The seemingly simple

concept of integrating collected data so that information can be conveniently induced

through inquiry is not trivial. A discussion of data fusion in a decentralized sensor

structure for target tracking and recognition is presented in Appendix A. The next few

sections contain some of the past research efforts related to the various system design

 12

components. Also, other related research are included as appropriate for an overall

understanding.

2.1.1 Sensor Network

The COUGAR project, developed in part by Cornell University, focuses on the

sensor network [66]. Motivated by the insufficient support for scalability and flexibility

in current sensor networks, the COUGAR project takes a distributed database approach

for processing sensor data over an ad-hoc network. The system supports long-running

queries for monitoring the environment as well as extemporaneous queries submitted by

users [66]. The Cougar system is capable of handling simple queries requesting raw data

from sensors to complex queries involving aggregate information gathered by multiple

sensors. Appendix B highlights the issues covered in the COUGAR database project as

applied to the dynamic UAV sensor system. The current research objectives of the

COUGAR project are “to build a new distributed data management layer that scales with

the growth of sensor interconnectivity and computational power on the sensors” and

“cross-layer optimizations,” which exploits commonly occurring patterns in query

processing to preserve resources [66].

By introducing the assumption that network nodes (sensors) possess local storage

capability, network traffic can be greatly reduced due to the fact that data buffering can

reduce the frequency of data transfer. Instead of transmitting small pieces of data

frequently across the network, large quantities can be transferred in less frequent

intervals, reducing the chance of transfer collision and the loss of data. Moreover, having

local storage in sensors enables sensors to keep a history of the sensor readings locally

and facilitates the fast detection of either environment changes or any query regarding

 13

recent sensor updates. In a stable environment devoid of changes, many consecutive

sensor readings would be the same over a period of time. Keeping a short history of the

readings makes it convenient to implement a policy at the sensor level such as storing the

updates only when there are changes in sensor readings.

 Similarly, augmenting sensor nodes with local processing power has several

advantages. In a networked system, the computation workload can be allotted to a set of

nodes exploiting parallel computation. Another potential use of the local processor is to

perform pre-processing tasks locally. One simple pre-processing task that follows from

the previous example of storing sensor readings only when changes occur involves

comparing readings to decide if two readings are identical. More computational intensive

pre-processing tasks are possible, too. For image data, images need to be stored in a

certain format along with some metadata that distinguish the image to allow content-

based retrieval. In this case, image-preprocessing may include computing image features

and extracting identifying properties before the images are admitted to the database.

 As suggested in the Cougar project, the combination of processing and storage

ability at local nodes can be exploited for both conserving power consumption and

eliminating network congestion [76]. Instead of transferring sensor data from each node

to a central location over a large network, computations can be performed in a

distributive manner at local nodes to produce intermediate results. The intermediate

results of reduced size can then be processed subsequently. Aggregation functions such

as average, max, or min, can use this approach. Since only the intermediate results are

sent, the number of message transmitted across network is greatly decreased, which both

conserves energy due to reduced transmission and mitigates network congestion. The

 14

challenge in this approach is synchronization between nodes, which is exacerbated by the

variance in network latency.

2.1.2 Swarming UAVs

Having UAVs swarm has received much attention in the DoD [12]. Swarming is

an emergent behavior observed in species such as bees, ants, and geese. Swarming has

been tested through millions of years of evolution and proves to be a good strategy for

tasks requiring collaboration. Swarming allows individuals to interact and achieve

elaborate group behavior that is not within the capability of any one individual [12]. The

assumption is that a large number of the unmanned air vehicles, on the order of hundreds

or thousands, equipped with wireless sensing devices can emulate social insects and

swarm like flocks of birds [33].

 Because swarming has some very attractive attributes to the control of a group of

autonomous machines such as decentralized, implicit control, resilient to imperfection,

and robust scalability, the swarming behavior is integrated to the methodology of

autonomous cooperative control of UAVs [12]. Through swarming, complex and

elaborate structures emerge from the interaction of a number of low-intelligent entities

following a few simple rules. By emulating the swarming behavior in the controller, a

group of simple, autonomous unmanned aerial vehicles can cooperate to perform the job

of a highly trained human [12].

In swarming, individuals communicate and interact amongst the group. The

information collected by sensors is organized and stored in a convenient manner.

Another feature of a swarm is that despite the lack of global knowledge, the absence of

global communication, and the presence of environmental noise, individuals are capable

 15

of performing tasks efficiently as a group [23]. This feature of swarms is desirable for a

collection of swarming UAVs since wireless communications are noisy and limited in

range.

Swarming is one aspect in the domain of autonomous aerial vehicles. The subject

of autonomous aerial vehicles has attracted much research interest because it

encompasses and inter-relates problems across multiple disciplines. For example,

scheduling problems that are combinatorial in complexity are found in the mission

planning and sensor allocation tasks. In fact, a genetic algorithm model designed for the

mission planning and dynamic allocation of airborne sensors has been proposed with the

goal of minimizing both execution cost and time, while maximizing the fulfillment of

high priority requests [61]. Particle simulation concepts also revealed their use in the

modeling of swarm dynamics in [68].

Existing research efforts established both a behavior model for swarming sensors

and a communication model for swarm-based sensor networks [33]. These swarm-based

sensors do not just move; they communicate and move in a structured manner following a

set of simple rules. While a plethora of protocols for mobile ad hoc networks exist [33],

due to either the lack of scalability or the large amount of overhead in implementation,

only three network routing protocols were investigated, namely, simplified Directed

Diffusion, Geographical Routing, and Flood protocol. When applied to steady-state

networks, simplified Directed Diffusion protocol slightly outperforms Geographical-

based Routing protocol, while they both outperform the Flood protocol [33]. However,

Directed Diffusion requires more system resources than the other two [33].

 16

2.1.3 Fast Data Retrieval

For large databases, mechanisms for efficient and accurate information retrieval

become mandatory. Commonly used techniques include fragmentation, caching, and

partial replication. [38] discusses the effects of data storage organization, collection

selection, and partial replication with replica selection on performance. The results of

simulation confirm that performance is heavily impacted by data locality and data

partition. It is also noteworthy that partial collection replication is not the same as

caching, which though simple and fast, fails to identify similar queries relating to the

same data set [38]. Another work by the authors of [38] indicates that the approach of

partial replication with replica selection would increase query locality and outperform

simple cashing with various configurations; “a combined approach will probably yield

the best performance. [39]”

Ezeife and Barker in [21] address the fragmentation of data across individual sites

for distributed object based systems. Investigations in the placement scheme of data to

minimize data transfer and thus the communication delays over the network for a

distributed database system mostly consider data as relations with the underlying

assumption of having text-based data. Research concerning fragmentation in a

distributed object-based system is rare. [21] provides algorithms for horizontal

fragmentation based on class inheritance and hierarchies. The objects in the system are

grouped into classes which include methods and attributes. While the expected

computation time of the proposed algorithm is favorable – having polynomial order of

complexity, the algorithm has its shortcomings. The algorithm assumes that the data

access pattern is known a priori and organizes the data fragments based on these

 17

predetermined patterns. The proposed algorithm has been tested on a static network;

support for transparent migration of fragments in a mobile environment is still the subject

of ongoing research [21].

2.1.4 Data Replication

As mentioned in Section 2.1.3, for a distributed database of moderate size to

deliver satisfactory performance, a data replication mechanism must be in place. Data

replication in distributed database systems refers to keeping the same data at multiple

sites to reduce the communication cost for transferring data. Although data replication

enables quick reference for read operations, it introduces complexities in the algorithm

for write operations. In the simplest form, the read-one/write-all technique allows read

operations to read from any available copy and write operations have to change all copies

of the data. Updating data can be costly and may severely degenerate performance due to

the delay involved in keeping all copies of the same object consistent. Innovative

methods such as enhanced tree quorum algorithm and multiple tree quorum algorithm

[11] were designed to decrease the operational cost while improving data availability. In

general, these methods present a balance between data consistency and the time it takes

to complete updates.

For replication to improve the system performance, copies of the object should be

widely available when large numbers of reads are requested, while the number of replicas

should be minimized when there are numerous writes. Taking this concept, Ouri

Wolfson et al. in [75] designed an adaptive data replication (ADR) algorithm for

replicating objects in the distributed database systems. The dynamic algorithm changes

the locations and number of processors in which replicas are maintained according to the

 18

read-write pattern of the accessing object. The replication scheme expands, contracts,

and shifts depending on the usage requests in the network. Experiments show that “the

communication cost of the ADR algorithm is on average between 21% and 50% lower

than that of a static replication algorithm [75].” Two features that make the ADR

algorithm suitable for a distributed system are: the execution of the ADR algorithm does

not depend on global knowledge of other nodes but only locally collected statistics of the

network traffic and some memory to keep track of status of its neighbors; the ADR

algorithm is compatible and can be integrated with several existing “concurrency control

and recovery mechanisms of a distributed database management system [75].”

2.2 Distributed Database on the UAV Communication Network

In the report of using UAVs in a reinforcement mission quoted in the

introduction, the command center appears to be the only interface with UAV from which

orders were issued and responses were sent back. Yet, the scenario can potentially be

broadened to have more components involved in the command and control (C2) chain.

Instead of one UAV, a group of UAVs are deployed and there’s communication among

the group as well as outside the group. In this case, each UAV is equipped with a

sensor/camera and limited computing and storage capability. Each of the UAVs can be

treated as a small database site; the ground command center, equipped with more

physical resources, is another large database site. Additional sites potentially may

include nearby aircraft that help exploit the locality of resources.

From the view of a communication network, a database search request can come

from a bomber aircraft requesting the location of a target. The request may be routed

through the command center, relayed by the satellite, to surveillance UAVs to find the

 19

current position of such an object. On the other hand, the UAVs may want to classify the

images they collect and identify objects of interest such as automated target recognition.

In this case, the database is searched against the collected image. Since the searched

object most likely is not on the local disk of the requesting UAV, the request is passed on

to other distributed data sites. In sophisticated aerial vehicles such as UAVs, it can be

reasonably assumed that UAVs periodically receive positioning information from

satellites as part of the global positioning and flight control routines. The database

system can take advantage of the existing communication link for navigation to distribute

data and transmitting queries among nodes.

 As a side note, one important use of images captured by UAVs is to facilitate

automatic target detection and recognition. Borphys et. al. [6], for example, proposed an

approach for long range automatic detection of targets using multi-sensor images to

detect stationary or moving targets. The major task of target recognition is comparing

images for patterns and searching for objects of interest. Logical entities are separated

from their backgrounds using techniques of image segmentation [56]. If a match is

found, the information can be transmitted to other units. Automatic target recognition,

however, is the topic of many research efforts [6] [34] [48] [65] [7] [46] and is outside

the range of this research.

2.3 Why Distributed Database?

In a distributed database network consisting of UAVs, each UAV acts as a small

database site while the ground command center is a large data repository; other aircraft

participating in the database transactions can also be treated as data repositories. The

small and mobile swarming UAVs neither have nor should be assumed to have the same

 20

amounts of resources for computation and storage as the ground command center.

Because of the non-uniform distribution of resources among database sites, the

distributed database system thus formed is considered a heterogeneous database.

Nonetheless, presenting the various data repositories as a single system is the

responsibility of the distributed database management system software. The database

management system functions similar to the middleware present in a cluster of a parallel

computing system that supports the single system image (SSI) infrastructure and system

availability infrastructure. It is described in [8] that “the SSI infrastructure glues together

operating systems on all nodes to offer unified access to system resources.” The

distributed database management system is responsible for numerous essential tasks that

ensure the smooth operation of the distributed database. Among them are system

recovery from crashes, communication link failures; keeping track of data distribution

and replication; maintaining data consistency of replicas.

2.3.1 Advantages of a Distributed Database System

As a result, the key benefits of a distributed database system include [1]

• Transparency Queries are submitted independent of the location of the

data (location transparency) and the operation is the same for local or remote

objects (access transparency). The distributed database system appears as a single

system. The database system masks object migration, concurrency issues, object

replication, system expansion, system failure, and system load from users

(migration, concurrency, scalability, replication, failure, and performance

transparency).

 21

• Capacity and Scalability The amount of memory and the number of hard disk

drives of a single system is limited. Having several database servers that act as a

single system increases the resources available and the software and hardware

from any node in the system can be shared (resource sharing). As the demand

grows, more computer systems are connected with little or no upheaval to the

DBMS.

• Efficiency and flexibility Data is stored close to the anticipated point of use.

Multiple copies of the same data are made and distributed throughout the network

making them readily available to requesting sites (data replication). Extensions

and improvements to the system can be accommodated through both standardized

and published interfaces (openness).

• Reliability and Availability The distributed database consists of many sites and

contains duplicated data (redundancy). When one site fails, the overall system

remains functional and allows data access from other sites (fault tolerance). In the

face of failures, the database system is also responsible for data recovery.

Besides these benefits, the distributed database system has close correspondence to the

decentralized swarming behavior and the distributed nature of the application.

 The features of the distributed database system meet many of the demands of the

UAV operation. First, queries submitted to the database should be allowed to enter from

any site on the network – queries from any UAVs for target recognition, from the

command center for pattern searching, from tanks or air combat fighters for information

retrieval. No information regarding the location of the relevant data is required by the

query input. Second, as the amount of image data increases or more sites are added, the

 22

database system should to adapt to the changes without major modification to the system.

Third, querying response time of the system is tested under the real time requirement of

military operations. The positions of various sites may change, as is the direction of flow

of query evaluation. Fourth, the nature of the task induces higher risk of encountering

site failures. The loss of communication may make one or more sites temporarily

unreachable. The system’s robustness to failures and the ability to provide service in

spite of imperfect conditions is a merit.

2.3.2 Constraints and Assumptions

Other limitations in the design of UAV network processing concern with the

physical resources as suggested in the Cougar project [76].

• Communication The UAVs use wireless communication. Problems with the

wireless links include bandwidth sharing, latency variance, transmission range,

and data loss rate.

• Power Consumption Energy conservation is a consideration since both

communication and computation on UAV sensors are powered by onboard

batteries.

• Computation A class of UAVs known as micro air vehicles is distinguished by

its small size and weight. Figure 3 shows a micro air vehicle, Black Widow,

developed by AeroVironment [33][69]. Having a length of 0.5 foot and weighing

0.093 pounds, Black Widow is an aircraft designed to carry a black and white

300x240 pixels video camera for military intelligence activities [33][69]. As the

sizes of UAVs diminish, resources become more constrained. One of the

considerations in sensor network design is that sensors are limited in computing

 23

power and memory sizes which confines the type of processing algorithms and

the amount of results stored on a UAV.

• Uncertainty in Sensor Readings Physical readings from sensors have

uncertainty because of the resolutions of the sensor, various environmental noises,

and other surrounding effects [76].

Figure 3 Micro Air Vehicle- Black Widow

One of the features of distributed database systems is data sharing while

maintaining local control. In our case, queries can be submitted to the database from any

database site. A query presented to an image database presumably can be in the form of

query by sample or query by features. In the former case, an example image is submitted

and the result is a set of images in the database similar to the input image to a certain

degree. In the latter case, the sample image is converted to a set of features representing

the image, and the query is formulated accordingly. A human expert or a pattern

extraction algorithm can be responsible for this conversion. In either case, for the

discussion of a distributed database system studied in this document, it is assumed that

such a mechanism is in place and so is a reasonable content-based retrieval algorithm.

 24

2.4 Distributed Processing

The model of a swarm of processors establishes the basic structure of a distributed

system. A distributed system affords reduced system processing time in most situations

and has more resources at its disposal to meet the time sensitive requirements of real-time

applications. Compared to a single-processor system, distributed processing enjoys

larger storage by means of utilizing all the hard disks of the processors connected in the

network. Distributed processing also enjoys the prerogative of concurrent processing

without the constraint of sharing the computing time of a CPU. The sections that follow

describe an algebraic model for message routing, a representation of the network

connection topology, and includes a discussion of the various image processing

algorithms applicable in a distributed environment.

2.4.1 Query Processing

In database systems, for a given operation, different processing strategies are

evaluated to find the strategy with the lowest cost. For centralized database systems, I/O

operations are the slowest operations in a uniprocessor application, thus the number of

disk accesses is often a good indicator for evaluating the cost of a processing strategy.

For distributed database systems, additional factors such as the cost of communication

over the network and the performance gain from parallel data processing should be taken

into consideration [58].

For message passing costs between processors in the network, store-and-forward

routing is briefly discussed. Assume data transmission within the network uses packet

routing, which is generally deemed more suitable for “networks with highly dynamic

states [25].” Under packet routing, a message is broken into small parts of equal length.

 25

For simplicity, in the formulation of a cost model described in this section, all packets of

a message are assumed to follow the same path from the source to destination node. Let

ts stands for the startup time of a message transfer, which is the overhead associated with

each message. r is the size of the original message in a packet; s is the additional

information including error correction and sequence number for each packet. Together,

r+s is the total length of a packet. If it takes tw1 time to prepare a packet, preparing a

message of size m into packets takes mtw1 time units. If a packet traverses l hops before

reaching the destination, each hop adding th time to the relay, and the network transfers

one word every tw2 unit of time, then the first packet would spend thl+tw2(r+s) time in

network transmission. A message of size m has m/r packets. Because of the pipelined

packet routing technique, after the first packet arrives, the rest of the packets arrive one

by one at tw2(r+s) seconds intervals. Borrowed from [25], the network transmission cost

model can be expressed by Equation 1.

Time for a message transfer

tcomm = ts + tw1m +thl +tw2(r+s) +(m/r-1) tw2(r+s)= ts + thl + twm (1)

where tw = tw1 + tw2(1+s/r).

 As Grama et al. points out in [25], the communication cost model suggests that

there are three ways to minimize the cost, targeting toward reducing each variable in the

model.

• Reduce the number of times a startup cost is incurred. The startup cost ts is fixed

for each message transfer. If multiple short messages combine into a long

message, the average startup cost per unit length is reduced.

 26

• Minimize the size of data. Keeping the data size small reduces the twm term.

• Minimize the number of hops in data transfer. The number of intermediate

nodes a packet visits affects the routing delay expressed in thl.

In addition to the communication cost, the performance gain obtained from

multiprocessors and more aggregate cache space should be considered. A widely-

accepted law governing parallel processing for fixed workload is Amdahl’s Law, which

states the performance improvement to be gained from using many processors over a

serial execution by one processor is upper-bounded by the fraction the program can be

executed in parallel [52]. For a program that requires T(1) to complete execution in serial

mode using one processor, having a fraction B of the program that can only be run

serially, if N processors are used, the parallelized execution time would be B*T(1)+((1-

B)*T(1))/N. The speedup (S), governed by Amdahl’s Law, would thus be S=

N/((B*N)+(1-B)) [42]. Gustafson’s Law offers a fixed time speedup model in which the

problem size is scaled with the assumption that parallel work scales with the problem

[10][64]. Sun and Ni’s Law generalizes both Amdahl’s Law and Gustafson’s Law to

propose a fixed-memory model [10]. With these three models available to evaluate

parallel processing applications, the model of choice depends on both the assumption of

the test suites and the testing strategies adopted.

 For wireless network communications, in addition to the message passing model

discussed previously, it should be noted that not all routes in a wireless network incur the

same latency. The network connecting the distributed database can be modeled as a

weighted directed graph with no negative edge. Such a model can expresses the fact that

in a wireless network, messages traversing in different directions on the same route can

 27

have different costs. The graph consists of a set of vertices (nodes), a set of edges (arcs)

and weight function w to map edges to weights. The weights of the edges are associated

with the data transfer cost as computed by the communication cost model.

Definition [59]: Given a weighted directed graph (G(V,E),w), we define the weight of a

path

p = (v0, v1, …, vk)

 as the sum of the weights of it’s constituent edges, i.e., as equation 2.

w(p) = ∑
=

k

i
vw

1
 vi)1,-i((2)

An example of a weighted directed graph is shown in Figure 4 [26].

Figure 4 A mathematical model of a wireless network

The shortest-path weight δ(u, v), which is the sum of the weights along the

shortest path, from u to v is expressed in equation 3 [60].

 28

 (3)

2.4.2 Parallel Image Processing

Image processing can take advantages of parallel processing in distributed

processing as well. Because a high degree of locality and parallelism exist in most image

processing jobs [62], parallel computing platforms provides easy mapping and becomes

an economical computing option. Squyres et. al. implemented a parallel image

processing software library, the Parallel Image Processing Toolkit, for obtaining speedy

processing of large images [62]. The software library is built on the commonly accepted

Message Passing Interface (MPI) standard; experiments using this library have shown

promising.

Along the same line in providing tools for high performance applications in

support of parallel image processing, a library-based software architecture is designed

that makes parallel implementation transparent to developers. Seinstra et. al. give an

assessment of the effectiveness of the proposed architecture in terms of performance

improvement from three example applications: template matching, multi-baseline stereo

vision, and line detection [57]. The results show that the architecture allows efficient

application executions that are comparable to hand-coded programs (not significantly

outperformed by hand-coded programs). As a consequence, application programmers are

able to develop high performance applications in image processing without mastering

parallel programming [57].

 29

Parallel processing can even increases the efficiency of pattern matching tasks.

Parallel algorithms that deliver low time bound complexity for one or two dimensional

pattern matching can be found in the literature. Crochemore et. al. describes an alphabet-

independent deterministic parallel algorithm for pattern matching in two dimensions

using a concurrent-read-concurrent-write-parallel-random-access-machine (CRCW-

PRAM) model [17]. The algorithm takes constant time following a preprocessing that

can be bounded by O(log log m) where m is the larger of the size of either dimension of

the two-dimensional pattern array. In another paper discussing the same parallel CRCW

PRAM algorithm, they argue that the O(log log m) time bound is optimal for both the one

and two dimensional pattern matching problem since another work has shown that the

problem has a Ω(log logm) lower time bound [13].

2.5 Image Query Processing Strategies

Multiple sensors are often used in a target acquisition and recognition application

providing multiple sensing sources. Pan et. al. [48] examined the use of fuzzy causal

probabilistic networks in multi-sensor data fusion. Korona et. al. in [34] proposed a

multi-sensor target recognition method based on logical models and feature fusion.

Another paper [35] by Korona discusses the idea of fusing multi-sensor data in different

frequency bands and resolutions for target recognition. In any rate, researches in multi-

sensor data fusion for target identification and detection abound. When it comes to

database searching and retrieval, attention should be directed to the representation of

images. Unlike conventional database in which contents are text-based, a database for

images or videos may contain textual annotations needs a standardized format to store the

contents. Ekin et. al. [20] suggested an integrated semantic-syntactic video event

 30

modeling that combines text and low-level video features to facilitate search and retrieval

in the database. Under this model, video events are represented by graphs. While this

integrated model supports the formulation of flexible queries and has been demonstrated

to be effective [20], its utilization is limited. Because the goal of the model is to describe

video events by capturing object-based motion features, instantiation of the model for

stationary images would not have components related to motions, which degenerates the

expressiveness of the graph, if such graph can be constructed. A more compelling reason

that makes this modeling system unattractive is the lack of an automated way to convert

video clips to the appropriate graphical representation. The authors of the paper did not

directly address this problem but simply stated that video segments can be expressed as

graphs following the proposed model. Another method, ImageMap, for indexing and

searching similar images based on graphical representations is introduced by Petrakis et.

al. in [51]. A commonly used image representation, Attributed Relational Graphs

(ARGs), along with ARG editing distance functions is applied. ImageMap represents

objects and regions in an image as nodes and arcs in a graph the maps the images into

low-dimensionality points. For fast retrieval, the f-dimensional points are indexed by an

R-tree structure. The process is illustrated by Figure 5 [51].

Figure 5 Process flow for image processing in ImageMap

 31

Another aspect of database query processing is the formulation of queries. With

the integrated semantic-syntactical model proposed by Ekin et. al. [20], graph patterns for

queries to the database can be generated by editing the generic model through insert,

delete, or duplicate parts of the model. Alternatively, users can modify existing image

descriptions or use model templates for special graph patterns [20]. Not only is this

approach convenient and flexible, it reduces the amount of information that needs to be

transferred for a query. The description of the search criteria or a graph template is

transferred to the system. Comparing this with a straight-forward query by sample

approach that sends the entire sample image, this approach structures the query more

succinctly and provides the possibility of further decreasing the network transfer load by

only sending the modified portion of the model. Still another approach suggested by

Saux et. al. in [37] aims at assisting the users to form a query by presenting an overview

of the contents of the database. Using Adaptive Robust Competition (ARC) approach,

[37] the database system selects the most representative image from each image category

to present to the users. In addition to the purpose of query by example, the support for

browsing a large image database implies that the time for image searching and retrieval is

shortened due to the reduction of search space – only images belonging to the same

category are considered.

 Following the idea of categorizing data in the database, Ghose et. al. investigated

a resilient data-centric storage scheme in wireless sensor networks [24]. In data centric

storage, queries are quickly directed to sensor nodes designated for storage of the specific

data type. The resilient data-centric storage model augments the capabilities by

supplying duplicated data and control information across the network to enhance data

 32

availability and hardware failure. Integrating the structure of data-centric design in the

context of pattern matching produces a process flow similar to the feature-based multi-

sensor data fusion system in Figure 6 [34]. The processing of data is organized as

follows: The raw data describing the physical world is collected and stored at local

sensor nodes. Initial processing of the raw data such as feature extraction and possibly

model checking can be performed locally at each sensor node before storage. The feature

sets representing sensor data are then fused to a feature vector followed by the

recognition step.

Figure 6 Feature-based multi-sensor data fusion system

Table 2 summarizes the different approaches for formulating image queries

discussed so far. The approaches are compared with a base line method in which images

from sensors are stored directly. Upon receiving an image query, the sample image is

 33

compared with all images in the database using an affinity function that determines the

similarity between two images quantitatively.

Table 2 Summary of approaches for formulating image queries

Approach Advantage Disadvantage Image Structure

Entire example
image

No preprocessing Long retrieval time,
high volume network
transfer

Pixels or raw
data format

Integrated
Semantic-
Syntactic Video
Event Modeling

Flexible query
construction, include
semantic and
syntactic information

Designed for capturing
motion, degenerated
model for stationary
objects

Graph model
with entities and
relations

ImageMap Fast search and
retrieval

Computation overhead
for feature extraction
and mapping

f-dimensional
points organized
in a tree structure

Adaptive Robust
Competition
(ARC)

Reduced search
space, have overview
of the database

Computation overhead
for fuzzy partitioning
clusters, dimensionality
reduction

Feature vector

For target recognition, two approaches are usually used –abstract-then-fuse and

fuse-then-abstract [35]. In the abstract-then-fuse approach, target recognition is

performed at each sensor node based on the local data. A global decision is then made by

integrating local information. In the fuse-then-abstract approach, sensor data from each

sensor is fused before target recognition process is performed [35]. None of the

literatures mentioned in this section regarding data fusion has explicit details on how

multi-sensor fusion is achieved in a distributed system. Having information from all

sensors gathered at one location to perform fusion clearly contradicts the concept of

distributed processing and leads to: flooding the network communication links,

 34

overburdening one processor, creating processing bottlenecks. Hence, a distributed data

fusion flow of control is of necessity for any data fusion scheme.

Because the focus of this research effort is on the utilization of distributed

databases to meet the storage and search requirements of the UAV application, it is

assumed that some form of image processing mechanism is embedded in the distributed

system. The underlying image representation and query strategy may involve one or

more or a combination of the approaches previous discussed. Images are internally

represented by streams of bits; and the degree of similarities of an image to another

image, according to a predetermined comparison algorithm, can be represented as a

floating point number. For these reasons, in the simplified model of the database system

that is described in detail in Chapter III and IV, measurements taken by the sensors are

represented as floating point numbers rather than in image format. By keeping the data

representation generic, it helps accommodate future expansion to suit various

applications.

2.6 Summary

This chapter has covered the context in which UAVs are deployed, their

significance in the information-oriented modern warfare, and the potential components

and setup of a dynamic distributed UAV network. The distributed database concepts in a

(UAV) sensor network and its relation to a parallel processing system have also been

discussed. Research related to the techniques for distributed database systems, image

processing, and parallel computing applications is identified. The information puts the

UAV sensor database under study into perspective and recognizes the interrelations and

variety of subjects that can be addressed in the ongoing and future work.

 35

III. Query Design/Structures

Getting from information describing the UAV sensor network and what is

involved in the system to proposing a simulation modeling this system consists of a lot of

deliberations. Although many of the techniques and approaches discussed thus far are

interesting, due to the scope of the research, simplifications have been made to

adequately investigate the issues identified by the objectives of this research. In the

process of narrowing on our focus, some decisions involve trade-offs and some topics

have to be deferred for future work. The system model constructed in this research for

the swarm-based distributed database places emphasis on the system performance of the

distributed system and the message passing costs for query execution. As a result, the

database specific inner works such as data retrieval techniques, the use of data

replication, image processing mechanisms, and the concept of parallel processing, are not

discussed further.

The first section of this chapter explains foundations of the high-level query

design from sensor network and query in the physical world. In the sections that follow,

a list of system design objectives (functionalities) is explicitly defined, along with a

description of the designs for both data structures and internal representation. Several

sensor database system design considerations are also discussed.

3.1 Querying Physical Space in a Networked Environment

The basic component in the distributed sensor UAV environment is the network,

which ensures the connectivity of sensors on the system. The concept of many

processing units, one network is the heart of environment monitoring and the backbone of

 36

distributed systems. One view of querying in the physical world is rendered in this

section along with the types of queries that might be submitted against such database. In

practice, wireless network connections are the media in a swarm of UAVs. Some of the

issues that may be encountered in a networked system are included in the discussion.

3.1.1 Networked Globe

The world today is sometimes referred to as an “information world.” The

immense amount of information around us can only be described as explosive and the

modern way of life relies heavily on information through a slew of channels. While there

are many different mediums to access news, one of the most powerful ways to access a

plethora of information is through the World Wide Web, an information highway.

The keyword in all these information sharing channel we all enjoy so much every

day is Network. How is it that CNN has so much news? Why so much information

about almost anything can be found using the World Wide Web? When information all

around the world is shared via a connected network infrastructure, it becomes the power

of networked collections.

 Various networks, LAN, WAN, and SAN scattering around the globe, has made

the earth an increasingly networked place. When it is tightly connected by the tangled

networks, the globe can be viewed as one networked entity. The three-dimensional

physical space can be treated as one large database containing billions of objects. The

concept of addressing objects geographically, rather than using logical addressing, and

defining a physical space containing data as DataSpace is brought forth in [29]. In this

paradigm, objects can be associated with processors, on top of their inherent

 37

characteristics. These objects can be queried to extract data pertinent to them, such as

color, size, or network connectivity [29].

 Like a regular database, the world described by DataSpace can be queried and

monitored. Data are stored in objects. What distinguishes the paradigm of DataSpace

from conventional databases is that objects are spatially located, operations are spatially

driven – rooms or streets replace local area network, and the physical world is the

database. Stated in another way, instead of having “physical objects become merely the

artifacts of their corresponding entry in a database,” in DataSpace, data are an inherent

part of the objects and can only be retrieved by reaching the objects [29]. Not

incidentally, this view of “the database is the network” is shared by [5] in association

with querying and monitoring the environment through a device network. [5] proposes

integrating query processing to the network of sensing devices.

3.1.2 Network Connection

As the backbone of a distributed system, the network mediates all communication

between nodes, encompassing passing assigned workloads, reporting local data, and any

other message transfer in support of distributed execution. Although wired connections

offer higher capability (current transfer data rate is approximately 10Mbps) than wireless

connections (around 1-2 Mbps for most wireless system), the specialized application of

swarming UAVs requires wireless connections [33]. In the wireless domain, system

capabilities also vary.

The properties of currently available IEEE standards for wireless technology are

listed in Table 3, which is extracted from [33].

 38

Table 3 Existing Wireless Systems Standards

 In a dynamic ad-hoc network, besides the connection media, other factors such as

the network protocol and the formation of nodes in the network affect the characteristics

of the networked system. From the design perspective, it is preferred that the network

connection should adhere to these goals:

Minimize latency – the bandwidth should be large enough and additional overhead

should be low enough to sustain the typical operations of the system.

Good Scalability – the network performance should be as linear as possible, or decreases

within a commonly acceptable range, as the participating entities increase.

Good Flexibility – the system should maintain high resilience to restructuring of

connecting nodes, change in query processing strategy, and functions relatively

independent to upgrades/modifications to the sensor nodes over time.

3.2 Capabilities of a Sensor Database

 Sensor databases typically work with applications that monitor its surroundings to

detect, classify, or track physical objects. In the context of satisfying the demands of a

monitoring system, a sensor database often needs to support these functions:

 39

• Disseminate query execution plan to sensors in the network (let each sensor know

what is needed)

• Compute/correlate data from sensors like performing average, max, min

operations

• Allow for long-running queries that keeps a continual watch on the surroundings

• Support communication among nodes efficiently

• Allow for collection of all sensor data in the network (may include sensor value

history)

• Support for ways of constructing a query and getting a report back

3.3 Sensor and Data Representation

While a large number of sensors are employed in the physical world to transform

physical environments to digital data, the capabilities of sensors vary. Sensors capable of

chemical detection find their use in measuring the chemical activities of an area, and

temperature measuring sensors are able to report the temperature of their positions at any

point in time. However, the ability to query the sensor systems allows information of

interest to be extracted to facilitate other tasks. As an illustration, statistical information

about the change of rainfall in an area contributes to the study of agriculture, climate

analysis, or consideration for the suitability of building a water reservoir. Queries in a

chemical sensor system can provide information for the analysis of the air composition in

an area and evaluate the actions appropriate in a disaster situation.

 40

In the discussion of sensor database systems in [4], it is pointed out that many

designs of sensor databases lack flexibility and scalability. All sensor data is retrieved in

a predefined way and is transmitted to a centralized location for processing, independent

of the nature of the query. In a distributed sensor database, related data is produced

simultaneously by a set of sensors according to the query execution plan. Rather than

considering each sensor as tables, sensors are viewed as response-active objects and data

is extracted from sensors based on the query. This approach avoids confining data

extraction in a predefined manner and affords a better analogy to querying objects in a

physical space – states of the object is returned upon request. The distributed query

execution plan is designed to aggregate operations on sensor data to be processed

concurrently in a distributed manner, thus exploiting the additional processing capability

of the distributed system.

In this sensor database system, queries may access the state of sensors at a

particular point in time, at a specific region, or may be concerned with the aggregates of

sensors over a time window. The representation of sensors, therefore, should be able to

satisfy the different types of queries. In particular, each sensor object contains methods

that facilitate the search, retrieval, and modification of the sensor’s history. The data

representation at the minimum should include the location where the data is collected, a

timestamp based on the current system time, readings of the sensor state, and a sensor id.

Notice that since the sensor is not static, the sensor location, along with the timestamp

needs to be maintained to completely describe the state of the collected data.

Another aspect concerning the result of the sensor database is that wireless

connections are prone to be affected by the terrain, environmental noises, and other

 41

factors. The connection of sensors to the network can be intermittent. Some sensors

containing pertinent information can be out of reach because of the swarming behavior of

the UAVs. It is possible to obtain different result sets in response to the same query at

different times. The result of a query is represented as a set of records or an empty set,

though it may not necessarily consist of responses from all of the sensors.

The design of this sensor database system is closely related to virtual sensors.

Virtual Sensors is a software abstraction to facilitate manipulation of the sensed data.

Three common sensor types are mentioned [2]: state sensors that return the current

measurement from sensors, event sensors that monitor for change of states, and trigger

sensors that report the current sensing value when an event is reported. These three types

of sensors correspond with the querying capacity of our sensor database system above.

The work of [2] indicates that Virtual Sensors provide both “control abstraction and data

abstraction [27]”. More importantly, [2] showed that using the design of Virtual Sensors

to implement a system, the system is able to guarantee a timeframe for real-time

operations and determine whether a request cannot be fulfilled via scheduling.

The subject of sensor database systems is by no means a revolutionary idea as

quite much material about this concept can be found in the literature. Among them, the

Cornell COUGAR system uses an object-relational database system [4]. The Cornell

COUGAR system models sensors as objects of an Abstract Data Type (ADT), expresses

queries in slightly modified version of SQL, and represents sensor data as time series [4].

The concept of virtual relations follows from referencing sensor ADT attributes in a

query. Virtual relations indicates the representation of ADT functions as a table, which

is not available in the database until requested and extracted from the sensors [4].

 42

Our design of the sensor database supports the object-oriented software

abstraction of objects, encapsulating sensor attributes and permitting interaction with

sensors through a well-defined interface. Multiple sensor types can be supported through

multiple ADTs. Scenarios in which multiple sensor types are present can be a swarm is

composed of multiple types of sensors (specialized UAVs with varying duties) or a UAV

carrying multiple sensors (UAVs with multiple duties). In our database model, each

UAV is assumed to carry one sensor; all sensors are of the same type, that is, all sensors

have the same sensing capability. The sensors can return the observations qualifying to

the conditions set by a user query. A triggering condition on sensor measurements for all

sensors on the network can also be defined. Once a trigger is set, new sensor

measurements meeting the threshold are returned to the user until the trigger is removed.

3.4 Networked Sensor Database Design

There are a few assumptions the simulation designers of a networked distributed

system made regarding the characteristics of the network and the database. As noted

before, the sensor database is built upon a swarm of UAVs. It is crucial, however, to

differentiate the swarming control algorithms from the algorithms for data processing in

the network. Admittedly, since both the swarming control mechanism and database

query processing share the same wireless network, some resource contention would

occur. In practice, it would be necessary to evaluate both mechanisms to prioritize/de-

conflict tasks; some messages can be piggybacked to conserve energy and bandwidth.

For simplicity, this database model is oblivious to the inner workings of the swarming

behavior of UAVs in so far the only information retained relating to swarm is the position

of each sensor at points in time as reflected by the records stored on sensors. The model

 43

thus assumes that system resources are available as needed. With these assumptions in

place, the rest of this section examines some other considerations involved in designing

this system in relation to time.

3.4.1 Cost of System Delay

When considering sending messages between two nodes over a network, the

sending node needs to marshal the data, prepare message into packets, packets then

traverse through nodes in the network, arrive at the receiving node, the receiver collects

packets, and unmarshals the data. The reverse process takes place when replies are sent

from the receiver to the sender.

From the standpoint of nodes, packets hop from the sending node, one hop at a

time through an indefinite number of nodes depending on the distance between the

sending and receiving nodes, to the destination. To simulate the system response time,

our system calculates the cost of generating a response to a query based on this concept.

Further, our system takes into account the complexity of the query and the number of

records on average a sensor node has to search through before giving a result. The

complexity of the query is the same for all sensors, but the average cost for query

processing is evaluated sensor by sensor. For queries involving aggregate operations, it

is assumed that the aggregates can be computed as the results are sent back from

distributed sensor nodes. Once results from sensors are gathered at the central location,

they need to be merged before presenting to the user. Assuming that records are sorted in

timestamps for presentation, the time complexity for sorting is O(n log n) for n number of

elements.

 44

The delay incurred by each component is highly dependent on the properties of

the system: the types of network, processor speed, transmission protocol, etc. The

weights allocated for each factor in our rudimentary model is not specific to any system

and is by no means representative of typical network or database systems. The cost of

the system delay computed hereby is a combination of CPU, I/O, and network cost.

Further tuning of these parameters can be done to reflect the environment of potential

deployment of the system.

3.4.2 Clocks and Synchronization

The calculation of message transfer delays and query processing cost in the

system involve the recording of time. In order to know the time an event occurred,

events are timestamped at each process using the clock at the node where the process

resides. In distributed systems, processes at different processors often need to coordinate

and participate in transactions in which timestamps are used to determine the order of

execution and serialize transactions. That is to say processors in distributed systems have

a need to synchronize their physical clocks to know the state of each process at a certain

time and to maintain the consistency of distributed data.

Timing in distributed systems is an important issue. Each computer has its own

physical clock. Clock skew and clock drift are two terms used to describe the disparity of

clocks. Clock skew refers to the difference in readings in computer clocks while clock

drift is the variation in frequency of clocks’ counts [16]. Numbers of algorithms exist for

approximately synchronizing processes in distributed systems by sending messages

through the network [16].

 45

The design of our distributed sensor network includes the simulation of clock

skew, which allows sensors to have different notion of what the current time is. It is

assumed, on the other hand, that all observations are taken at one time increment interval

in lock-steps. Hence, no clock drift exists. The sensors can later be synchronized to a

global time through broadcasting. Another assumption is that the Global Positioning

System (GPS) transmits timing signals to UAVs at regular intervals to maintain a

universal time across the network. Our design also supports the notion of a global time

and eliminates clock skew when the global time assumption is used.

3.4.3 Current Observations

Sometimes it is tempting for users to ask for the current measurements of all

sensors as a live report. A query requesting information that is collected right now is

unusual to a conventional database and is not specifically identified as the capabilities in

the initial design of our sensor database. The closest approach to obtaining current

measurements of sensors using the existing query structure is asking for records with the

maximum timestamps, namely, the latest observations, assuming sensors are

synchronized to a global time.

One of the concerns in requesting for current sensor readings is the clock skew

problem discussed earlier. With the absence of a global clock, sensors may have

different timestamps for the current time. If a global time exists, another problem arises

–how is current measurements defined. What do we mean by right now? There is

invariably some delay from the moment a query is issued to the moment a query is

evaluated at sensors. To top it all, the delay is not the same for every sensor. A sensor

that is farther from the query dissemination point would receive the query later than a

 46

sensor that is nearby. Does current measurement mean the sensor reading at the time the

query is submitted or the latest reading at each sensor as the query is evaluated? The

definition for current observations must be made clear if the ability to query current

measurements is to be added to the sensor database system.

The current design of the system is such that the result produced for a query is

based on the contents of the database at the time the query is issued. It is very well be the

case that some more observations have been made by the time the query arrived at the

sensing nodes. But the returned records from the sensors would include only the records

that qualify the restrictions imposed by the query at the time the query is entered.

3.4.4 Message Passing Method

 Part of the assumptions of the swarming UAVs model is that a UAV moves in

accordance to the behavior of its neighbors and its local information; there is no

centralized control. For the sensor network, it means the whereabouts of sensors some

time in the future is unknown; in that regard, even the current positions of the sensors are

unknown without the aids of satellites and GPS. Some sensors could possibly go astray

and move out of the reach of others. The message passing method should be robust and

tolerate these scenarios while finding all the sensors that can be reached.

 For the sake of simplicity, the sensors in our network pass messages (query

request and results) using a hopping technique. All queries are assumed to be issued

from the same location, which can be a command center. A radius is defined for the

distance that can be covered by wireless without forwarding. Sensors located within the

radius can be reached with one hop and are marked. For each unmarked sensor, it is

 47

determined if it can be reached by any sensor which has been marked; if so, mark the

sensor with a hop number one greater than the sensor by which it is reached. The number

of hops needed to reach a sensor is kept to the minimum by always testing if a sensor can

be reached by starting from the sensors marked with the lowest hops.

 The number of hops needed to pass messages to a sensor is included in the

calculation of system delays. By using the technique above, unmarked sensors are out of

the reach by others. It is also possible that the entire swarm of sensors is out of reach

because the swarm has moved too far from the command center. Additionally, some

sensors can receive the query but move away during query processing and unable to send

back the results. Our design of the database tolerates these situations and generates a

message to the user. While it is not conventional for databases to report information

about data that the database is not capable of returning, a swarm-based sensor database is

distinct in that the system is built upon moving sensors. As further elaborated in Section

4.3 and 4.4, additional information supplies users with the condition under which the

results are reported and assess the values of the results accordingly.

3.5 Summary

 The Cougar database project suggests that the prevalence of networks and

sensors, either wired or wireless, has transformed the physical world into a computational

world. Still, sometimes it is not customary for people to grasp the usefulness of the

ubiquitous network -- that live environmental properties can be monitored and queried

over a network. After examining the concept of DataSpace and querying through

networked sensors, this chapter provides a high-leveled description of the initial system

design steps and considerations. Other design choices are justified and estimated from

 48

our knowledge of the properties of the distributed system. Implementation specifics and

more design issues in experiments are presented next in Chapter IV.

 49

IV. Implementation/Detailed Design of Experiments

 Following the design of the distributed sensor database, this chapter begins with

presenting the details of some interesting features of the system and the rationale behind

these implementation choices. By referencing similar or alternative designs in literature,

the first two sections explain what makes this database system suitable to the tasks of its

potential application and what makes it distinct. Discussions of low-leveled system

designs and their relations to sound software engineering principles are included where

appropriate. Then, measures for assessing the performance of the sensor database system

model are chosen. This chapter proceeds with a discussion of the approaches for testing

in order to provide a quantitative understanding of the execution of the system. The

design of experiments also shows what the user should be able to expect of the system.

A short rationale for alternative testing scenarios is provided.

4.1 Virtual Database

In the description of device database systems in [5], each device is represented by

an Abstract Data Type (ADT) object. By using an object-relational database system, a

method of an ADT can be represented as a virtual relation, a record of which consists of

the input arguments to the method as well as an output parameter [5]. Query execution

plans can include virtual relations. The virtual relation is not materialized until function

calls invoke the corresponding method on all ADT objects and virtual records containing

the results are returned [5].

Analogously, our sensor database system can be regarded as a virtual database in

the sense that information in the database is not available until queries are submitted and

 50

evaluated in the form of a set of timed records. Due to the limited life time of sensors

and their local storage constraint, data that is not obtained through query is lost as the

sensors die or as memory space is full and new readings overwrite old records. For this

reason, an all command is supported in our query system to enable users retrieve all

records currently stored on sensors. On receiving the all command, all sensors would

send their entire store of records back to the command center, which consumes a lot of

energy and may clog the network. Thus, this should be done sparingly only when it is

necessary to preserve the current state of the entire system.

Sensors are represented as ADT objects in our sensor database system, too. The

use of ADT adheres to object-oriented programming concepts and offers a number of

benefits. From the point of view of software engineering, ADTs allow for building a

software model that has close correspondence to application domain objects or concepts.

In our case, a sensor ADT object maps to a sensor UAV and has the properties associated

with a physical sensor in the application model. In specific, each sensor has a system

clock, has sensing ability, and stores a history of sensor readings. Also, ADTs aids

software maintainability and extensibility. If the attributes of sensors ever change in the

application (change storage size or allow sensors to have other capabilities),

modifications can be made with ease through ADTs. Virtual relations, though useful for

accessing attributes of sensor devices through methods, is not incorporated in our design

of the database. Because in our simulation model there is only one type of sensor in the

sensor network and one value is measured by the sensor, the advantages of using virtual

relations do not exist. Besides, embedding virtual relations as part of execution plans and

evaluating virtual relations assumes a sufficiently great control, if not total control, of the

 51

inner workings of the underlying database. This kind of low-leveled control on the

database is not available in our simulation.

4.2 Query Semantics

In addition to the all command, our sensor database system supports long-running

queries, queries involving aggregations operations, and queries consisting of comparison

operators and logical operators. But what makes querying in this system easy is that

users need not have knowledge of the Structured Querying Language (SQL) to construct

a query, nor does the developer. Users can build a query from commonly known

operators like larger-than (>), less-than (<), and (&&), or (||).

4.2.1 Query Functions

Both [5] and [2] mention the capability of sensors to detect changes of state and

raises signals asynchronously. Also known as long-running queries, the ability to detect

changes or events enables users to monitor an environment. [5] shows an example of

using a device network for flood detection; with long-running queries, sensors can raise

alarms when abnormal rainfall level is detected. In our system, a long-running query is

initiated by setting a trigger condition on the sensor readings. The current

implementation allows one trigger condition to be set at any point in time and permits

only one condition on the threshold, e.g. one of >=, >, <=, or <. Multiple triggers taking

more complex conditions can potentially be added in the future. The trigger command is

used to instruct the database to set a triggering condition. In subsequent runs, the

removeTrigger command allows the previously defined trigger to be removed from the

database. The trigger does not have to be the first command issued to the database

 52

system and can be set at any time. However, only the new measurements since the

trigger was set are reported.

Aggregation operators that act on a collection of records are implemented in our

database system. The currently supported aggregation functions are max, min, and avg.

While the query evaluation is assumed to be done in a distributed manner on all sensors

in parallel, the aggregation is performed at a central location. Since distributive

processing of aggregation functions requires merging results in multiple steps,

mechanisms responsible for keeping track of sensors need to be in place. Without a fixed

topology and global knowledge of other sensors, implementing such mechanism is not

trivial. Therefore, our implementation reports one result in response to the aggregation

function from each sensor and carries out the final aggregation at the central location.

4.2.2 Query Implementation

The object persistence technique adopted by the simulation of the distributed

sensor database is Java Data Objects. Java Data Objects (JDO) is a standard for storing

and retrieving data and preserves the states of objects beyond the lifetime of the Java

Virtual Machine. Implementations that conform to the JDO standard are JDO

implementations. Our simulation uses FastObjects™ j1 community edition by Poet

Software. One of the benefits of JDO is its portability. Applications can be written

independent of data stores. Therefore, no change in application is required when moving

between data stores, even when the data stores use different paradigms such as relation

database versus object database [54]. When changing to a different data store,

appropriate JDO implementation for the data store need to be adopted [54].

 53

 Another important benefit of JDO is that knowing SQL is not a requirement [54].

Not using SQL frees the developer from the burden of formulating SQL-styled queries

from user input. It becomes easier to tailor the user query interface to the specific

problem domain model than being dictated by the SQL syntax. For example, in our

database system, besides the aggregation functions and the trigger for long-running

queries, the users can specific queries conditioning on four variables: the x coordinate,

the y coordinate, the time of data collection, and the value of the sensor reading. These

queries can be expressed in simple forms to be entered to the program; some examples

are:

x > 30.0 && y < 25.5

time > 5 && time < 10

(value > 46.2 || value < -14) && x > 70.0.

The first query asks for all observations made when the x coordinates of sensors are

greater than 30.0 and the y coordinates are less than 25.5. The second query is interested

in the sensor readings from time units 5 to 10. The third query wants sensor readings

which are greater than 46.2 or less than -14 when the x coordinates of the sensors are

greater than 70.0. Currently, our simulator takes in queries from command line and

subsequent queries can be issued once the previous task is complete. Simulation time

automatically increments as a function of query delay and the number of commands that

has been issued since the system starts. Appendix C describes the input the simulator

expects and shows a sample run of the simulation.

 54

On the whole, eliminating the use of SQL enables the internals of the data store

and the execution of queries being more opaque to developers and promotes data store

independence. Relating to software principles, the choice of using JDO rids unnecessary

complexity in program development for database operations and eliminates places for

potential bugs. Through JDO, programs can be written at a high level, impervious to

changes in the low-level vendor specific database infrastructure, which greatly improve

the maintainability of the software.

4.3 Performance Measures

 To evaluate the performance of the system of our study, some of the common

measures applied for evaluating the performance of a database are presented here with an

explanation of their applicability to the system under discussion.

Efficiency Efficiency measures how fast tasks can be completed. Two closely related

terms are response time and throughput of the system.

• Response time is the elapsed time starting from when a task (query) is

submitted until the system returns a result.

• Throughput refers to the amount of work (number of queries) the system

completes in a unit of time.

• Scalability Scalability refers to the extensibility of the system as the

number of participants grows.

Effectiveness Effectiveness measures the quality of work completed –how well the

returned result matches what it is supposed to return.

.

 55

For database systems, throughput and response time are two conventional metrics

for performance [5]. When applying these metrics to the distributed database system, the

query response time, for example, would be affected by the query decomposition, query

optimizer, network transmission delay, data retrieval, and data merging delays, to name a

few. The throughput of the database is of concern when flow of transactions is large. As

[5] states, in a pipelined processing environment, the response time is determined by the

longer operation in the pipeline. Since our simulation of the distributed database is

neither pipelined nor multithreaded (it can not process multiple queries simultaneously),

response time and throughput are associated with an inverse relation. It would be

redundant to include both throughput and response time in the system evaluation. The

response time of the system, in our case, is limited by the accuracy of the assumptions

made in the simulation and does not include delays accrued by all components of the

system. Because the time cost of processing a query, which is captured in the simulation,

directly affects the response time; response time is chosen as one of the performance

measures.

Response time and throughput fall under the category of efficiency. Scalability is

another measure of efficiency. Scalability measures the impact on the system as more

nodes are added or more jobs are submitted simultaneously. Due to the lack of a detailed

communication protocol implementation, information of delays from increased network

communication as typically expected when increasing the number of nodes is not

available in our simulation. Besides, since the current design of the distribute database

system does not support multiple users or simultaneous processing of multiple queries,

 56

scalability loses its meaning. Thus, scalability test is not a suitable measure for our

system.

 Effectiveness applied to our simulation serves as a validation check for the

accuracy of the sensor collection process. Also, in the applications of swarming UAVs, it

is of vital interest to know how much information about the environment is reflected by

the swarm sensor readings. The reliability of the sensors is built upon several factors,

including sensors’ resilience against outside noise, error detection/correction mechanisms

in the communication channel, and data storage stability. What is more, the spread of the

swarms in an area inserts bias in the system reports. Since the movement of swarms does

not guarantee an even coverage of the entire surveying area, the some areas could

contribute to more of the sensor readings in the database than other areas. Hardware

stability such as electronic malfunctions in sensors, too, can affect the accuracy of the

environment that is deduced from the swarm of sensors. When deemed appropriate, a set

of experiments should be designed to collect meaningful statistics to reduce the obscure

effect.

It is desired to have the collective measurements of the sensors to closely follow

the characteristics of the physical world they monitor. Data in the sensor database

actually represents the monitored environment in various levels of completeness. The

resulted collection depends on the path taken by the UAVs in the region of interest, the

density of sensors covering the region, and the duration of time sensors spent taking

measurements in that region. So, the content of the sensor database is best interpreted

with an understanding of the accompanying conditions as mentioned above.

 57

4.4 Experiment Methodology

This section starts by providing an overview on the setup of the simulation and

various assumptions made in the experiments. In specific, the sources of data taken by

the distributed database simulator are discussed. Then, the discussion continues to cover

the objectives of the experiments and the approaches used. Experimental parameters are

explained while appropriate.

4.4.1 Experiment Background

The distributed database simulator does not simulate the swarming behavior of

UAVs. To provide the swarming movement for a group of networked sensors, our

simulation adopts the work of Brian Kadrovach on swarming UAVs [33]. Brian

Kadrovach developed a simulator for his swarming UAV behavior model; the swarm

simulator generates positions of each UAV in two-dimensional Cartesian coordinates at

each simulation time step. A description of the parameter settings and commands used

for swarm simulations is provided in Appendix C. The swarm simulation assumes that

sensor UAVs fly at the same altitude, and two-dimensional coordinates are sufficient to

describe the locations of each UAV on a plane. Our sensor database makes the same

assumption about UAVs. Our sensor database further assumes that these sensors take

measurements of certain environmental property.

For the purpose of demonstrating the environmental monitoring ability of the

UAV sensor network, the sensors make temperature measurements of the environment.

The simulated data for sensor readings is taken from a MM3 weather forecast model that

ran for 24 hours with output at an interval of an hour. The model uses gridpoints on a

 58

198 x 198 lambert conformal grid. All variables are taken at 500mb and sensors’

temperature readings are in Kelvin (K). The gridpoints are 15km apart.

 The experiments are categorized into those that are concerned with the delay in

time from query submission to receiving the outcome of the query and those that consider

the quality of query results.

The experiments from the first category are conducted on a scenario by scenario

basis to examine the effects on database system reaction time as the swarm evolves. The

different type of queries submitted to the system is a major contributor to the system

delay. In general, the time spent doing IO or network communication is orders of

magnitude slower than the time performing CPU processing. In the simulator, the cost

factor concerning communication is deliberately set to be much higher than that

representing computation to reflect the relative system delay encountered in each case.

As time progresses, the contents of the database grows from empty up to a limited

storage. This produces an increase in processing load. The objective of experiments

concerning the system delay is to investigate the system response time corresponding to

the interested parameter of study. For the experiments in this research, the type of query

and the state of the database system are investigated.

 Another focus of the research is to investigate and give an estimate of how close

the sensor readings from the swarming UAVs approximate the real physical conditions of

the environment. This is achieved by providing information about the swarm relative to

an area of interest in terms of space and time. The movement of swarm is best captured

using animation to show the positions of individual members as time changes. Our

simulated distributed sensor database system stores the temperature readings as a group

 59

of sensors fly over a region in certain time span. It should be noted that the original grids

on which weather data is modeled and the positions of the original swarm simulation

output do not coincide. While the grids from the weather data are specified in terms of

longitudes and latitudes, the swarm simulation supplies UAVs with simulated

coordinates. For purpose of experiments, the positions of UAVs from the swarm

simulator are scaled and shifted to map onto the grids. The sensor readings are taken from

the nearest grid point after the mapping. An animation of the movement of swarming

UAVs within the grids is provided to show the sensor coverage of the area in time. The

center of the swarm, expressed as the mean position of the swarm, at each time unit is

calculated and displayed as the swarm moves.

As part of the efforts in informing the users of the quality of the query results,

results for aggregate operations are returned with useful accompanying information. The

pieces of accompanying information consist of the number of sensors and the total

number of sensor readings involved in producing the result. In evaluating the conditions

under which the sensor readings are taken, it is helpful for the decision makers to

understand the reliability of the reports thereby produced.

It is sometimes difficult to find appropriate quantative metrics for a qualitative

study. In an effort to quantify the expectations for a query outcome, scenarios are

constructed to observe the outcome of queries by varying the scenario settings. The

objective of the type of experiments involving the quality of the data reported by

swarming sensors is to study the outcome of the specific types of queries and how it

matches or does not match a user’s expectation.

 60

From the experiment design perspective, each set of experiment is conducted by

varying the variable of study while holding other variables as close to constant as

possible. Table 4 lists the parameters of study in each set of experiments performed.

Table 4 Experimental variable and metrics

Experiment Tested Variable Evaluation
Metric

Query Complexity Number of query conditions Response time

Query Characteristics Size of query result Response time

Database Size Number of records in the data
store

Response time

Sensor spread and coverage(Section
5.3.1)

Sensor density Effectiveness

Sensor spread and coverage(Section
5.3.2)

Time coverage of query Effectiveness

4.4.2 Cost Function Parameters

A number of elements affect the response time of the queries as described in

Section 3.5.1. An approximation of the system delays is incorporated in the simulation

through a set of parameters. Some parameters are constants fixed for the duration of the

simulation; some are variables that change with time and input. Table 5 lists the set of

parameters used by the simulation for calculating the system response time. Each

parameter is shown as a variable or constant within the simulation and whether a change

in its value would affect inter-node communication cost or computation processing cos.

These parameters are included to account for the major delays in the database system

under consideration.

 61

Table 5 Parameters in computing system delay

Parameter Type Effect

Query type (complexity) dynamic communication & processing

Wireless range static communication

Command center location static communication

Time of query dynamic processing (& communication)

Hop rate static communication

Central processing rate static processing

Data retrieval rate static processing

Query type: The type of the query can be separated into queries containing aggregation

operator and queries without aggregation (including all command). Queries are

submitted at run-time and can have arbitrary complexity with any number of conditions.

Complexity of the query, in our simulation, is assumed to be proportional to the number

of conditions comprising the query. Typically, one result from each sensor node is

returned in response to an aggregation operation. In contrast, all observations have to be

returned for an all operation. The number of messages sent is directly related to the

communication cost and the processing cost at both ends of the communicating nodes.

Wireless range: The effective distance of wireless connection determines how far the

swarm can go from the command center without losing contact. It also determines the

number of hops- message forwarding via intermediate node- involved for query

dissemination and collecting results.

Command center location: The position of the command center, from which all queries

are assumed to be generated and returned, determines the hops needed.

 62

Time of query: As time progresses, the database experiences an increase in size as more

observations are made and stored (up to the storage limit). Search and retrieval time is

lengthened. Potentially, depending on the queries, more qualifying results are to be

returned as time goes on, which increases the communication cost.

Hop rate, central processing rate, and data retrieval rate: Hardware properties such

as the characteristics of the routing node, speed of the processing unit, and each sensor

node’s memory structure and speed respectively affect the values of these parameters. In

the following experiments, they are set to be constants.

This part of our experiments focuses on investigating the effects of varying

queries and query submission time on the reaction time of the system while retaining the

other parameters at constant. Because the system response time is internally calculated

using a set of mathematical formulas comprising of these parameters, the same response

time is returned by the simulation for the same set of parameters and swarm data. In

other words, it is of little meaning to run the simulation multiple times with the same

input unless the simulation is for a different set of swarm data or at different simulation

time. In reality, for a stable database system, the same system delay should be expected

while all environmental variables are. The variable which can vary in practice and this

simulation does not include is the delay due to network traffic, which is almost

unpredictable if the wireless network is shared as is often the case in commercial sectors.

None of the experiments discussed are intended to validate the correctness of the

simulation, but rather to observe the system performance caused by specific variables.

The query response time is controlled by mathematical functions whereas the correctness

of the query output is determined by the embedded database implementation.

 63

Furthermore, since the initial input describing the UAV positions contains a predefined

number of simulation time steps for swarm movements, the experiments concerning

varying time steps should allow reasonably large number of time steps separations

between runs to obtain noticeable performance difference. This implies that the number

of experiments should be kept small. On the other hand, a sufficient number of runs

should be conducted for analysis. The experiments testing system response delays follow

what is typical in computation analysis and uses 5 to 6 runs [31].

4.4.3 Sensor Density and Coverage

The focus of experiments here is examining the relation between increased sensor

density and the physical world the sensor database measures. Unlike other database

systems where data is entered in a static environment, such as the device network

described in [5], the sensors are stationary at fixed locations; sensor UAVs represent a

dynamic database. Enabling sensors to move adds immense flexibility to the system. It

is possible to monitor a large area and tolerate coarse granular samples of the entire area.

Or, sensors can concentrate in a small area to get fine-grained data. The price that comes

with increased flexibility is that it is no longer clear how good the data is – how much

authority is associated with the data or how reliable the results are. Especially, swarms

do not have a fixed formation. Total control of the swarm is sacrificed by allowing

swarms to run autonomously.

Applications which employ swarm sensors to collecting information are often

interested in not only the contents of the database but the quality of the results from a

query. Databases can be queried in many ways, but not all responses carry the same

significance in representing the queried environment. For illustration, if a user wants to

 64

know the average temperature of area A from 7am to 7pm, the database would produce a

result based on its contents. Suppose the swarm sensors merely skimmed over area A for

one hour, say from 12pm to 1pm, and spent the rest of the day zooming area B, the

response for the average temperature for area A would not represent what the user

expects. In this scenario, there is no flaw in the database and the result is correct as far as

the database is concerned. Regardless, the quality of the result is poor and most likely

misleading. To mitigate the adverse effects, other information about the swarm sensors

and the condition under which the result is generated are indispensable.

Although scalability of the database system is not one of the performance metrics,

the effectiveness of the database system is. By increasing the number of sensors in the

network, more sensor readings can be obtained for an area. Comparing the database

comprised of these sensors and the underlying environment would serve a good indicator

as to the effectiveness of the database. Despite of the proximity of the database contents

and the properties of the physical world at a certain time, it is vital for users to know what

information the database can be relied on to contain in order to get the most out of the

queries. Effectiveness of the queries can be enhanced by understanding the movement of

the swarm over time. For an increasingly large swarm, visualizing their movements is

the easiest way to perceive their movement relative to space and time.

Intuitively, the density of the sensor in the queried area and the coverage of the

area would impact the quality of the database report. The expected number of

observations per square unit area is proportional to the density of sensors in that region.

Time introduces another dimension in the number of observations vs. sensor density

coverage relation. The user should have some reasonable expectations based on the

 65

nature and characteristics of swarms to the query responses before queries are entered.

Experiments in Section 5.3 are performed to study the expected effectiveness of a sensor

database through querying databases under a variety of scenarios. For experimental

purpose, the size of the grids is trimmed down by a factor of 10 in each dimension to

allow adequate swarm coverage. Namely, a 20x20 grid is applied instead of the entire

198x198 grids.

4.5 Other Sensor Scenarios

A number of alternative scenarios can be devised in the experiment design. In the

study of sensor density and coverage, the current experimental design only covers the

variation of time and sensor density with respect to a random set of grid points. Similar

tests cases can be built for regions on the grid. Consider a region of a grid is made of

contiguous grid points; a region is in effect a two-dimensional expansion of a single grid

point. Testing for observations made within a region perhaps has a more practical

purpose because regions on a grid correspond to geographical areas in the physical world.

However, sensor scenarios for area testing include details such as the size of the region,

whether multiple areas should be selected on the grid for observation, and how the areas

should be selected. The selection of these parameters often has application specific

purposes and justifications should be made for their selection. It is decided that the

experiment designs are to be kept generic and simple.

Based on the capability of the sensor database system, tests of validation can be

performed. For example, to validate the functionality of setting and removing a long-

running query for monitoring the physical environment, a potential set up would be to set

a trigger and make sure at least two events meeting that triggering requirement occurs at

 66

some time apart. Then the system can be validated by checking if the trigger is activated

when the event happens and if the second event is reported once the trigger is removed.

Yet, tests like these give little insight about the system but rather some confidence in the

correctness of the program’s execution.

4.6 Summary

Implementation characteristics are elaborated in this chapter and are compared or

adopted from systems of other researches. Choices of implementation are detailed in the

chapter. Also covered in the discussion are the measures for evaluating the system and

justifications for their use. The designs and variables of testing for the suites of

experiments to be performed are included along with other experiment alternatives. This

sets up the preparation for the experiments in Chapter V.

 67

V. Results and Analysis

 This chapter presents the results of our experiments and the associated analysis.

The experiments follow the design and methodology as discussed in Chapter IV. The

focuses are on the performance of a distributed swarm sensor database system with

respect to query responses. Analysis is carried out both quantitatively and qualitatively.

The experiments in the first section deal with system delays in generating query

responses due to the nature of the query. Then more experiments are performed leading

to an analysis of query delays as related to database size. Finally, swarm characteristics

with relation to query outputs are examined. The experiments in the first two sections

follow the discussion of Section 4.4.1 and are concerned with the system delay cost. The

experiments in the third section entail from Section 4.4.2.

5.1 Type of Query

The set of experiments in this section shows the effects on response time as the

type of query varies. First, the correspondence between response time and query

complexity is investigated. Query complexity in these experiments is defined to be

proportional to the number of restricting conditions a query contains. Detailed parameter

settings under which the response times are obtained are included in Appendix D.

Queries are submitted to the database when the database has the same size to eliminate

the effect of data volume on the response time. Similarly, the size of the returned results

is controlled by carefully selecting the conditions so that the same number of

observations is returned for each query. Table 6 shows the response time and the

corresponding query complexity.

 68

Table 6 Query complexity and response time

Query Complexity

(# of conditions)

Simulated Response Time

(ms)

1 98.62

2 98.72

3 98.82

4 98.92

5 139.02

6 139.12

From the table, it is clear that query response times become steadily longer as the

number of query conditions goes up. At first glance, the cause of the sudden jump in

response time when the query complexity goes from 4 to 5 conditions is unexplained.

However, after tracing through the simulation, it is found that network communication

delay is responsible for the sudden increase in response time. The additional delay in

query processing due to query complexity leads to results being sent back at different

time units and the corresponding structure of the swarm at those time units requires more

time to sent data back.

 Second, using the same parameter settings, the following runs intend to show the

system delay due to both processing cost and communication cost in aggregation queries

versus a query that returns the entire database. Again, all queries are submitted while the

database is of the same size. The first three runs validate the logic embedded in the

database simulator that all aggregation operations on the entire database have the same

delay cost. Aggregate operations are chosen to be compared with the results of an all

 69

command because both operations involve scanning through the entire record set. Thus,

it can be assumed that both incur approximately the same processing cost at the sensing

nodes, if the slight computation cost for finding local min, max, or average in aggregate

operations is ignored. As shown in Table 7, the response time of a query consisting of

only an aggregate operator is in sharp contrast to that of collecting the records of the

entire database. The reason is twofold. A vast amount of data sending through network

accumulates considerable communication delay which is much more than the delay

incurred by sending one record back per node as an aggregate operation would. Another

reason is concerned with the processing cost at the receiving end in merging data from all

nodes. It is expected that any assumption and operation that affect inter-node

communications outweighs those impacting the CPU processing time. Thus, the large

difference in response time between an aggregation operation and an all operation is

mainly attributed to the excessive network transmission involved in the all operation.

Table 7 Query type and response time

Query Type Aggregate

(avg y)

Aggregate

(min x)

Aggregate

(max value)

All

Response Time

(ms)

8.2 8.2 8.2 98.72

5.2 Database Size

The size of the database impacts system performance both in communication time

(for sending potentially more results) and in query processing cost (due to the data

volume to be searched through). As an illustration, for a system of 10 sensors, each of

 70

which making observations at the rate of 10 readings per hour, an all command at the end

of the first hour causes 10*10=100 records to be sent back; the same all command

submitted at the end of the fifth hour produces 500 records. In the efforts to observe the

impacts of query submission time on query response delay as described in 4.4.1 for the

parameter Time of Query, 5 runs are performed. For each run, an aggregate operation is

submitted to make the effect of increased data load at each sensor node more observable.

Aggregation operations mandate that every record in the sensor is processed but typically

only one record is sent back from each node. Choosing aggregate operations therefore

exploits the full effect of the size of the data store while ridding the query response time

from unnecessary network communication cost. Besides, using aggregation has the

additional benefit that the number of records that are returned is much more predictable

than queries consisting of arbitrary conditions. By choosing aggregation queries, the

variable contribution to the overall response time resulting from sending a different

number of messages over time is reduced.

Table 8 shows the results of the simulations. The trials are designed so that at the

submission time of each query, the amount of data in sensor nodes is raised by a fixed

increment. Related environment settings for these runs are discussed in Appendix D.

Notice in Figure 7 that the last four trials exhibit a linear increase in response time with

the increased amount of data at each node. The first trial seems to be off from the trend.

Upon further investigation, it is revealed that since the value for wireless range parameter

is quite large, all nodes are reachable within one hop at the time trial #1 is run. After trial

#1, the swarm move farther away; while the whole swarm remains connected, some

 71

nodes require more than one hop to be researched. Because the query result is not

returned until the last node is reported the gap in response time is explained.

Table 8 Data store size and response time

Trial # 1 2 3 4 5

Response Time (ms) 4.9 9.8 10.7 11.6 12.5

Response Time vs.Database
Size

0
2
4
6
8

10
12
14

1 2 3 4 5

Number of Records in
Each Node (x90)

R
es

po
ns

e
Ti

m
e

(m
s)

Series 1

Figure 7 Graph of database system response time and database size

5.3 Query Results in Space and Time

 As discussed in the experiment design, the following experiments map the swarm

movements to be enclosed in a 20x20 grid. The observations are recorded for 500 time

steps over a 24 hour period. At each time unit, each sensor records the temperature of the

nearest grid point; that is, the sensing radius of a sensor is restricted to one grid point- the

one it is closet to. This assumption simplifies the experiments. To study the expected

number of observations from a query concerning specific locations on the grid, 50

 72

random grid points are chosen. 50 points out of 400 grid points covers 12.5% of the

entire swarming area and should be sufficient to examine the effect of sensor density in

space and time. Appendix D.3 includes the actual grid points used and other system

settings.

5.3.1 Grid Points and Sensor Density

For each randomly chosen grid point, the number of resulting sensor readings

from the corresponding query is recorded. 5 sets of experiments querying the same 50

random grid points are performed with each set containing the number of sensors that is a

multiple of the number of sensors in the first set. Refer to Appendix D.3 for the results

of these experiments. Table 9 and Table 10 summarizes the results of each set of

experiment in terms of the sum of the total sensor readings obtained and the number of

reporting points, respectively. Subsequently, the summaries are put in graphs in Figure 8

and Figure 9, respectively.

Table 9 Summary of observations made in 90 time units

of
sensors 15 30 45 60 75
of
readings 61 435 821 314 12

Table 10 Summary of number of positions of observations in 90 time units

of
sensors 15 30 45 60 75
of points 6 5 20 7 7

 73

Sensor Density vs. Number of
Readings

0

200

400

600

800

1000

15 30 45 60 75

Number of Sensors in
Area

N
um

be
r o

f R
ep

or
te

d
R

ea
di

ng
s

observations

Figure 8 Graph of sensor density and number of observations

Sensor Density vs. Reporting
Points

0

5

10

15

20

25

15 30 45 60 75

Number of Sensors in
Area

N
um

be
r o

f R
ep

or
tin

g
G

ri
d

Po
in

ts

Number of
Reporting
Points

Figure 9 Graph of sensor density and number of reporting points

 From the graphs, there does not appear to be any apparent trends. Although the

first part of the graph in Figure 8 suggests that the number of returned sensor readings has

a linear relation with the number of sensors in the area, this trend is not observed in the

second part of the graph. In fact, the second part of the graph seems to obey an inverse

 74

linear relation. An interesting point shown by the graph is that the number of sensor

readings reported by the system is less when the sensor density is highest than that at any

other sensor density, which is counter-intuitive. Nonetheless, it can be inferred from the

graph that the structure of the swarms of size 60 and 75 are quite different from their

structures at smaller sizes. The swarm structure as its size grows over 60 sensors happens

not to have much overlap with the random grid points, which is quite possible

considering that only 50 out of 400 grid points are selected. From Figure 9, our

inference is assisted by the indication that the number of reporting points at swarm size

60 and 75 are the same, but the number of reported readings shows apparent decline from

314 to 12. This can also be an indication that the swarm of size 75 has spread apart and

deviates from the grid points captured by these trials. By combining the information

contained in both graphs, it suggests that the swarm hovers over a small number of points

at size 30 when the lowest number of reporting points contributes to the second largest

number of readings. The formation of the swarm coincides best with the locations of the

selected grid points at size 45 when both the number of reporting points and number of

readings are largest.

5.3.2 Time and Sensor Density

 The experiments in the previous section vary the number of sensors, that is,

sensor density with respect to a fixed time span (90 simulation time units). The next sets

of experiments look at a fixed sensor density of 75 sensors in the region over an

increasing time span. All values from the previous settings are retained with each set of

experiments conducted at increasingly later points in time. The results of each run are

 75

included in Appendix D.3. Table 11 and Table 12 summarize the query results from 50

runs. The graphs of summaries are shown in Figure 10 and Figure 11.

Table 11 Summary of observations made with 75 sensors

time units 90 180 270 360 450

of

readings 12 573 2216 2881 3672

Table 12 Summary of number of points of observations made with 75 sensors

time units 90 180 270 360 450

of points 7 17 20 22 32

Time Span vs. Number of
Readings

0

1000

2000

3000

4000

90 27
0

45
0

Time Elapsed Since
Sensing Starts

Nu
m

be
r o

f R
ep

or
te

d
R

ea
di

ng
s

observations

Figure 10 Graph of number of observations and time

 76

Time Span vs. Reporting Points

0
5

10
15
20
25
30
35

90 180 270 360 450

Time Elapsed Since
Sensing Starts

N
um

be
r o

f R
ep

or
tin

g
G

ri
d

Po
in

ts Number of
Reporting
Points

Figure 11 Graph of number of reporting points and time

 Each time the length of time span is increased, it increases the time window

during which any sensor can make an observation. Both graphs show increased query

results as time goes on despite some fluctuations, which is expected for measurements

involving statistical data at random points. Also, the dynamic changing of the swarm

structure and path would have some impact on the outcome. Furthermore, it should be

noted the suggestion that the number of sensor readings or number of reporting points

would be proportional to sensor density in a region is based on the assumption that

sensors are scattered evenly or move at random in space. This assumption is somewhat

defeated when the underlying sensors follow, not random movement, but a specific type

of coordinated collective behavior – swarming.

5.4 Summary

 The experiments examined the effects on the system as the type of query varies,

the database size grows, and more sensors are deployed. In the test of query complexity,

 77

increased system response delay was observed as the query conditions grows, which is

consistent with the system delay formulas built in the simulator. Besides query

complexity, the query type affects the volume of data being transmitted in the network.

As the second part of Section 5.1 revealed, the amount of data produced by a query has a

significant impact on the system response time. Compared to the effects on response

time caused by network transmission delay, the increase in processing time due to large

data set is less significant, which can be understood given the relative speed of processor

and network communication. Section 5.3 provides analyses of query results with relation

to space and time. The results in Section 5.3.1 showed little indication that the expected

number of sensor readings is proportional to sensor density. This result is hardly

surprising given that the selected grid points are random and swarming individuals tend

to move as a group. Finally, in Section 5.3.2, the time window for observation is

widened gradually over trials to examine its effects on the result size. In this case, both

number of observations and points of observation showed approximate linear growth

with time. In all the experiments, the formation of swarm and location has a steady

impact on the results, most prominently shown in the experiments in Section 5.3.1 and

Figure 7. The results in Section 5.3.1 are directed more by the swarm movement than

density, and the sudden increase in system delay shown in Figure 7 is explained by the

change of swarm formation over time.

 78

VI. Conclusions and Future Work

The top-level goal of this research is to examine the prospect of storing

reconnaissance data from a collection of networked swarming unmanned aerial vehicles

(UAVs) in a distributed database system. A discussion is presented as to what has been

done in this research and how the objectives in support of the top-level goal set in

Chapter I have been satisfied. Significant results and contributions of this work to the

area of study of UAVs are provided, along with suggestions and recommendations for

further research in this area.

6.1 Summary and Conclusions

In this research, a model has been developed that simulates a distributed database

built on a swarm of sensors. Using this simulation model, a set of test suites have been

designed to observe system performance. The two primary measures used to evaluate the

system performance are efficiency and effectiveness. For the experiments testing

efficiency in Section 5.1 and Section 5.2, query characteristics and the data load of the

data store at query submission are analyzed. The input query conditions examined

include queries consisting of multiple conditions of increasing number, aggregate queries,

and queries requesting for the entire record set in the data store. To examine the effects

of data load, another set of experiments entered queries of the same type to the database

system at different simulation times. For the experiments intended to examine the

effectiveness of the networked sensor database in Section 5.3, swarm properties are

examined in the context of space and time. By analyzing the results, it is found that

dynamic changes in swarm topology have a distinct impact on both the system response

 79

time and query results. Inputs leading to large network transmissions affect the response

latency much more than the effects resulted by increased processing load, which validates

the cost function of the simulator and is consistent with our expectation. It is also

revealed that the data (temperature) readings reported by the sensor network do not

necessarily grow with the average sensor density in the monitored environment. But

rather, an understanding of the swarm movement in space and time is necessary to

facilitate effective data retrieval. In any rate, lengthening the observation window

showed a positive impact on both the number of sensor readings returns and the number

of grid points where readings are obtained.

In conclusion, the objectives as stated in Chapter I have been successfully

accomplished through:

• Building a distributed sensor database model with built-in cost functions

simulating delays caused by various factors as discussed in system model design

in Chapter III and implementation details in Chapter IV.

• Constructing test cases specifically examining various query characteristics, data

store attributes, and swarm properties as discussed in Section 4.4.

• Adopting evaluation metrics for analyzing the output of the system model as

presented in Section 4.3.

• Exploring the effects and relative amount of influence resulted from various

system components as discussed in Chapter V.

 80

6.2 Research Contribution

Querying objects in a physical environment against a network of sensors deviates

from the perceptions of a traditional database system where data is not thought of as

dynamic. Understanding how networked sensors are able to be queried is the first step in

constructing a sensor database model. In this research effort, a sensor distributed

database system simulation model has been developed. The simulation model has been

designed specifically considering the use of swarming UAVs as distributed data stores.

Swarms of sizes ranging from 15 UAVs to 75 UAVs have been successfully tested in the

simulation model. A number of potential system components in the networked database

system are considered. Through the use of a set of test cases and evaluation metrics, this

research explored the properties of such system model in a typical reconnaissance

mission. The values of the simulator variable settings, though not necessarily correspond

to the properties of a real system, give a convenient way of evaluating the impacts of a

number of system properties on the overall performance. In all, this research builds on

the ongoing study of swarming UAVs [33][23][14] and extends this swarm idea by

incorporating a distributed database system to solve the data storage/search needs of the

reconnaissance application in the modern network-centric warfare. Another aspect of this

research is using a sensor network for environment monitoring. The Cougar project by

the Cornell Database Group did an extensive study in this area [66][15][76]. As a result

of their study, a sensor database supporting in-network query processing in an ad-hoc

network has been developed. Although the sensor network described in the Cougar

project does not account for mobile sensors, much can be learned in their work as

applicable to the swarming UAV sensor network.

 81

6.3 Future Work

As pointed out in Chapter II, the subject of a swarm of networked UAVs carrying

sensors and possessing computation power and storage involve topics from multiple

disciplines. Several areas of study have been identified, including internal optimization

mechanisms of distributed database systems; techniques regarding the storage, search,

and retrieval of image data; and the concept of utilizing parallel processing in a

distributed system. A contemporary research effort at the Air Force Institute of

Technology has successfully parallelized simulating swarming UAVs in a reconnaissance

environment using the technique of discrete event simulation [14]. Using multiple

processors for swarm simulation provides the frame work for possible development of a

more realistic distributed database system model in which each processor represents one

UAV.

The distributed database system simulator developed in this work while capturing

the essential functions of a distributed database, has room for improvement. Some of the

potential areas for improvement are:

• Event detection: the ability to have multiple criteria for environment event

monitoring. [2] uses the notion of even sensors as a class of sensors that detect

changes in sensor states asynchronously.

• Multithreading: capability for multiple queries from users can be handled.

Research for processing multiple queries and optimization techniques for

processing multiple queries abound [9][78][74].

 82

• Network communication: more details can be added in simulating transmissions

in the wireless network, including bandwidth considerations, estimates for energy

consumption, application of a network communication protocol, and

considerations for network traffic congestion [33][15].

Other details that can be included in the model are estimates for reliability of sensor

(failure rate), reliability of network communication, and uncertainty in sensor readings.

 83

Appendix A. Decentralized Sensor Fusion – Target

Tracking and Target Recognition

 Decentralized sensor fusion architecture differs from centralized architecture in

that the filtering and some computational processing is performed at the local sensors

instead of aggregate all sensor data in one place and fuses them. Even in decentralized

architecture, the processed local results are further fused to form a global estimate in a

central unit. Pucar and Norber [53] proposed an algorithm for decentralized sensor

fusion and target tracking using extended Adaptive Forgetting through Multiple Models

(AFMM) with a decentralized Kalman filtering scheme.

Since target recognition is closely related to target tracking, this paper intends to

better understand the implications of the decentralized sensor fusion algorithm to target

recognition and the underlying assumptions. This paper starts with a short overview of

the algorithm proposed by Pucar and Norber, followed by a closer examination of the

operating considerations and how they differ from those for target recognition. Then, the

paper concludes with a discussion of the applicability of adopting the technique for

decentralized sensor fusion to target recognition.

Two features proposed by Pucar and Norber as an extension to AFMM algorithm

are support and alert of the sensor. To better understand support and alert, consider that a

global estimate is obtained from sensor fusion and filtering. If that central estimate is fed

back to the local sensors, the local sensors can benefit from this knowledge by either

using the central estimate to reinforce the tracking ability of the sensor if the estimate of

the local sensor is inferior, or altering the local sensor to focus its signal processing on

 84

the indicated area if the local sensor did not detect the tracks contained in the central

estimate. This approach could be defected by negative feedbacks and result in

degradation. An essential part of the algorithm proposed in [53] is to contain the

undesirable feedback while allowing local sensors benefit from the central estimate. This

is accomplished through probabilistically including the central estimate in the filtering

algorithm of the local sensor. When the global estimate is transferred back to the local

sensors, the global track estimate is checked against the local sensor measurements. If

the global estimate is better, the probability associated with that sequence increases;

otherwise, it is lessened. Eventually, the sequence containing an estimate inconsistent

with target measurements is terminated.

 A crucial assumption in the tracking model is that a number of sensors, possibly

of different type, “observe the same dynamic system (target) [53]” and use the same

target model. This is an over-simplifying assumption. Realistically speaking, although a

collection of sensors can be deployed at the same region to observe a dynamic object, not

all sensors may be able to detect that object of interest due to limitations in the field of

view of the sensor and the individual sensor location. The sensors can certainly be placed

such that all sensors are able to observe the same target, provided the location of the

target is known a priori, which is rarely the case, given that the target can move. The

scenario is much more complicated when multiple targets exist. As a result, it is not clear

which sensors have a specific target in view, making it difficult to distinguish noises from

targets based on the sensor measurements. It is especially true for target recognition

where the appearance of an object taken from different views can greatly impact the

ability of identifying the object.

 85

Also, an implicit assumption of the sensor fusion algorithm is that the sensors

have a full view of the target. [53] states that when either the target dynamics or the

measurement processes are nonlinear, the sensors do not have the same model of the

target. In such situation, the algorithm depends on the assumption that since all sensors

are tracking the same target the difference in the local state estimates (which directly

affect the transition matrix) of each sensor is approximately close. However, this

assumption does not necessarily hold when sensors only have limited partial data of the

target. As the technology progresses, the sizes of sensors become smaller. It is the trend

of the future to have a larger number of small sensors. Logically, most sensors only

have a partial image of the target; a challenge of sensor fusion would be to produce the

big picture from the measurements of local sensors while reducing the effect of noise. A

target recognition or target tracking algorithm is then applied to the integrated big picture

to sift out the objects of interest. The proposed decentralized sensor fusion algorithm

does not address this possibility. On the other hand, the techniques of data association

and target association may prove to be useful here. Track initiation and target association

can be applied to supply extra information to existing tracks or targets to glue together

the missing information. Track initiation is a process in which when a target in local

measurement is not confirmed to be associated to any existing track, a decision is made

for whether it is a new target or noise. Track update modifies the existing picture by

updating the track or the targets when applying in the context of target recognition.

The main difference in decentralized sensor fusion for target recognition and

target tracking is that target recognition does not need to keep track of the movement of

the target or predict the most probable movement though knowing the most likely

 86

movement of the target would help the placement of sensors to gather measurements to

better facilitate identification. With the exception of having a feature comparison/target

identifying algorithm in place, the process for target recognition is very similar to target

tracking. The discussion above indicates two concerns that should not be overlooked

when considering applying the extended AFMM and Kalman filter scheme to target

recognition. It is doubtful that the existing tracking algorithm would accommodate these

additional needs without considerable amount of efforts. Nonetheless, the approaches of

fusing data from decentralized sensors serves as a valuable reference for future

development in this area.

 87

Appendix B. Application of the COUGAR Sensor

Database Project on Unmanned Aerial Vehicles

 The COUGAR system developed by the Cornell Database Group at Cornell

University is targeted toward the investigation of a distributed database infrastructure on

a network of small sensors having certain (e.g. seismic, acoustic, or temperature) sensing

capabilities. The system is designed to be scalable and fault-tolerant, at the same time

providing flexible data access [66]. The COUGAR sensor database project addresses a

number of concerns that need to be considered for the design of a distributed database

system for unmanned aerial vehicles (UAVs) in a surveillance mission. As a working

system comprising of query processing over ad-hoc sensor networks [66], the COUGAR

system represents one feasible solution to the sensor network data management problem.

 Because of the highly similarity in the problem domain, it is helpful to understand

and evaluate the challenges faced and the system architecture of the COUGAR system.

Nevertheless, this paper is not a summary of the COUGAR system; rather, this paper

takes the important points identified by the COUGAR project and describes their

relevance to the problem of data management using distributed database on UAVs. This

paper also points out how the characteristics inherent in our problem domain, that is,

distributed database system on UAVs, affect our considerations.

 The main reason for advocating in-network storage and processing in a sensor

network is due to the fact that with the current state of technology the power consumption

for communication in networks is much more than performing computation within nodes

 88

[66]. The previous approach of sending sensor data offline for querying and analysis is

both not cost-effective and unattractive in terms of system flexibility. While the

statements above hold true in the UAV operations, when handling multiple images of

high resolution the onsite storage capacities (amount of storage on the sensor or the UAV

on which the sensor is mounted) may be pressed to the limit. Other image processing

operations and possibly some rudimentary target recognition steps are reasonably

expected to be taken onboard. They all contend for the already limited system resources

on a network node.

 The type of sensors considered by the COUGAR project is “nodes

communicating via wireless multi-hop RF radio powered by small batteries [66].”

Sensors of this type are subject to some physical constraints, as identified in the

COUGAR project: communication, power consumption, computation, uncertainty in

sensor readings [66]. In general, the same constraints apply to surveillance UAVs. The

good news is that the sensors on UAVs do not have to operate by themselves; they are

connected to a relatively large vehicle (compared to the size of the sensors themselves).

The unmanned aircrafts have existing communication channel for navigation and fly

control. Communication between aircrafts on the same network is most likely available

as well. The communication needed for the distributed data management system can use

the existing communication channel or piggyback on other communication data to reduce

the overhead. Similarly, the resource constraints for sensor’s power consumption and

computation capability can be relaxed if the computing and energy capacities of the

aircraft is included in the consideration. Even so, the aircrafts have still limited

 89

capacities. Today, the flight duration of typical UAVs ranges from one to forty-eight

hours with payloads from two to one thousand nine hundred and sixty lbs [22].

 Though the additional resources on UAVs cannot help the uncertainty in sensor

readings, the number and mobility of the UAVs can. Despite that there are invariably

uncertainties inherent in the physical limitation of the sensors, for example, the image

resolution; having multiple UAVs scout an area eliminates the problem of a bad sensor

placement. A particular property of UAVs is that they are mobile – a property that is not

explicitly stated in the sensor network investigated by the COUGAR project. The UAVs

can make several rounds around an object, thus reducing the uncertainty. Besides, the

uncertainty in sensor readings becomes less significant when automatic target recognition

or some pattern matching algorithms are applied. Because fuzzy logics (or

approximations) are used in pattern matching, little noises have a good chance of being

glossed over by the algorithm.

 From the ad-hoc network model and using the direct diffusion protocol for

network communication, the sensor network in the COUGAR project is certainly a

dynamic network. Still, the model of the COUGAR system does not completely satisfy

the requirements of a distributed image database. Inspection of the COUGAR system

processing steps indicates that the user query is submitted to the system through the Java-

based GUI using graphical input or in SQL format, which is translated to XML format for

query processing [15]. Queries are passed to a FrontEnd component that serves as the

sensor network gateway. The FrontEnd manages the running queries and processes the

tuples returned from QueryProxy, which is in charge of the exchanges of tuples among

sensor nodes and communication with sensor devices and within the sensor clusters, to

 90

produce the result [15]. The final result is shown in tabular form with the option of being

sent to a MySQL database [15]. In its essence, the COUGAR system is designed to work

with relational databases. Unless conventions are adapted to format image data into

relations and represent images as tuples, different system architecture is needed for the

UAVs.

 A large part of the problem background information in the COUGAR project

coincides with that of the scouting UAV problem, such as the use of a distributed system,

the dynamic reconfigurable sensor network, and in network wireless communication.

But a group of UAVs is more than a network of sensors. The fact that in

surveillance/reconnaissance UAV operations, sensors are equipped on UAVs gives the

sensors an edge over a pure sensor network. Integrating the sensors as part of the UAV

allows more resources from UAVs to be accessible to sensor. On the other hand, this

also introduces complexities in the sharing of resources. Another complexity in

developing a distributed system for UAVs is the presentation of data. The current

internal structures of the COUGAR system expect queries and sensor data to be

translated to relations. To take advantage of the exiting COUGAR system, images

collected on UAVs need to conform to the structure of a relation. Or a system structure

suited for distributed processing of images need to be developed.

 91

Appendix C. Simulation Input

C.1 Sensor Database Simulator Interface

 To run the simulator, it is assumed that a Java Virtual Machine is installed on the

platform. In the command window, enter the following:

java QueryNetwork [all] | [trigger comp_op value] | [aggregate_op property] [property

condition [log_op property condition] ….]

 The options for running the simulator are:

all – return all data in the system

 trigger – set a long running condition on sensor measurements

 value – conditioning threshold on sensor reading

 aggregate_op – max, min, or avg

 property – x, y, value, or time

 condition – expression composed of comp_op followed by a value

comp_op – ==, >, <, >=, <=, !=

log_op – ||, &&

Optional parentheses are allowed to specify evaluation order.

Figure 12 shows a sample output of the database in response to the query (time > 5&&

time < 10) && y < 18.1. The query is submitted at time units 20 of simulation time and

the wireless range is set to 156.8.

 92

Figure 12 Sample simulation query output

C.2 Swarm Simulator Settings

 Several runs were conducted to collect the UAV positions of swarms of various

sizes. The switch settings used to run the simulation with 15 sensors is

swarm /h w.swh /i 500 /s 3454 /b yes

where /h flag specifies the output file, /i flag indicates the number of time steps to

simulate, /s flag gives a seed for the internal random number generator, and /b specifies

that a boundary is used. An additional file containing swarm configuration data is used in

the swarm simulation. The parameters values for the swarm movements input to the

database simulator are included in Table 13. The parameter that is responsible for the

RecoEd: sens
RecoEd: sens
RecoEd: sens
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
sensoE Id
mln delay Is

»»»
»»»
»»»

OElD - 9 X - 36.167793 y - 17.656092 value - 4.375976102264102 time - 6
OElD - 14 X - 40.250067 y - 17.06675 value - 4.796616920609962 time - 6
OElD - 14 X - 45.3639 y - 14.144669 value = 0.4272386274301643 time = 9
15 incuEES communication cost 10.0
14 incuEES communication cost 50.0
13 incuEES communication cost 10.0
12 incuEES communication cost 10.0
11 incuEES communication cost 10.0
10 incuEES communication cost 10.0
9 incuEES communication cost 20.0
6 incuEES communication cost 10.0
7 incuEES communication cost 10.0
6 incuEES communication cost 10.0
5 incuEES communication cost 10.0
4 incuEES communication cost 10.0
3 incuEES communication cost 10.0
2 incuEES communication cost 10.0
1 incuEES communication cost 10.0
10.0 max delay is 50.0

2 4 6 6 10
Response Time COE this query is 10.327969926483314
centEal time -22
Please enteE a cruery, set a trigger, type removeTrigger to reset a previously entered trigger, or enter q to stop

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

QueryNetwork

IE] MesssQes ^ Builder 1^ RunjDebug

 93

size of the swarm is Popsize, which is varied from 15 to 75 at an interval of 15 to produce

the swarms included in the experiments in Chapter V. Refer to Appendix F of [33] for a

complete list of command line switches available and information about the parameter

file.

Table 13 Parameter setting in param.txt file for swarm simulations

Region 3000 2000

Popsize 15

Scale 50.0

CZone 10.0

Dir 0.0

Seed 5216

Type 1

Velocity 1.0

Turn 5.0

 94

Appendix D. Experiment Settings and Output

D.1 Query Complexity Test

The values of simulation parameters used in the trials for discussing query

complexity in Section 5.1 are listed in Table 14.

Table 14 Parameter setting for distributed sensor database simulation in query

complexity test

Parameter Value

Wireless range 142.0

Command center location (0,0)

Time of query 20

Hop rate 2.0

Central processing rate 1/170

Data retrieval rate 1/100

The swarm data contains 15 sensors in the swarm network making observations over 500

time units. Only data of the first 20 time units are in the database when the queries are

submitted; that is, it is assumed that queries are initiated at time unit 20. For each run

trial, the number of conditions in the query is varied. The query input for each trial is as

shown in Table 15.

Table 15 Queries used in complexity test

Trial# Query

1 x < 145.5

 95

2 x < 145.5 && x > 27.1

3 x < 145.5 && x > 27.1 && y > -61.1

4 (x < 145.5 && x > 27.1 && y > -61.1&& y < 110.2)

5 (x < 145.5 && x > 27.1 && y > -61.1&& y < 110.2)||value <=59

6 (x < 145.5 && x > 27.1 && y > -61.1&& y < 110.2)||(value
<=59&&value>=30)

D.2 Data Load Test

 The tests for data load are conducted with the same parameter settings as in Table

14 with the exception of wireless range, which is set to 666.9. The value for wireless

range is determined experimentally from the locations of the swarm and their distances to

the command center at different points in time. The range of the wireless connection is

chosen as to prevent any nodes from moving out of the range. Generally, keeping all

nodes within reach is not a requirement; the data of those nodes not connected in the

network is simply lost. Nevertheless, the value for wireless range is deliberately chosen

to be large enough for all nodes to be able to report back in order to produce meaningful

results and remove special conditions in evaluating the system response times.

 Timing is imperative in this set of experiments. If observations are taken at a

fixed time interval, which is one of the assumptions in the sensor data simulation, the

time a query is entered should be evenly apart. To ensure that the database is augmented

by the same amount between each trial, the same number of simulation time unit has to

elapse before the next query can be submitted. Specifically, since there are 500 time

steps from the swarm simulation and 5 trials are performed, each query is presented to the

 96

database system 90 time units apart to allow extra time for query processing. Table 16

gives the queries entered for each trial.

Table 16 Query inputs in data load test

Trial# Query

1 max x

2 min x

3 max y

4 min y

5 min value

D.3 Effectiveness Test

For the effectiveness experiments, response time is not considered, which renders

most of the parameter settings irrelevant. Two parameters, the wireless radius and the

length of time since sensors start storing data; still play a part in the outcome of these

experiments. The radius of wireless range is set to 668.99 to guarantee all sensor

observations can be reported. Time span is an experimental variable that changes with

the trial. A random number generator is used to generate 50 grid points, listed in Table

17, to be monitored for observations. The grid points fall in the range of [0-19, 0-19]

inclusive, corresponding to a 20x20 grid.

Table 17 50 random grid points on a 20x20 grid

(0,13) (9,15) (12,16) (19,10) (0,11) (13,13) (9, 0) (14,13) (15,4) (16,10)

(13, 9) (10,17) (14,13) (18,9) (8,6) (16,12) (7,3) (3,6) (3,10) (7,4)

 97

(12,11) (5, 17) (4,11) (1,14) (11,19) (18,1) (5,19) (14,16) (8,12) (17,17)

(16,14) (12,13) (13,11) (14,15) (12,15) (11,13) (5,4) (11,6) (12,19) (4,15)

(3,1) (12,3) (17,15) (4,17) (6,8) (13,9) (5,17) (14,0) (5,2) (8,9)

 Tables 18 to Table 22 show the sizes of the returning result sets when querying

each of these randomly generated grid points against the database. The trial number

corresponds to the order of the grid points. Each query is submitted at the same time unit

– time 90.

Table 18 Runs for 15 sensors with 90 time units

Trial# 1 2 3 4 5 6 7 8 9 10
of
readings 0 0 0 0 0 0 0 0 0 0
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 0 0 0 0 4 0 0 0 0 21
Trial# 21 22 23 24 25 26 27 28 29 30
of
readings 0 0 0 0 0 0 0 0 0 0
Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 0 0 0 0 0 0 8 0 0 0
Trial# 41 42 43 44 45 46 47 48 49 50
of
readings 0 0 0 0 22 0 0 0 2 4

Table 19 Runs for 30 sensors with 90 time units

Trial# 1 2 3 4 5 6 7 8 9 10
of
readings 0 0 0 0 0 0 60 0 0 0
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 0 0 0 0 0 0 196 3 0 0
Trial# 21 22 23 24 25 26 27 28 29 30
of
readings 0 0 0 0 0 0 0 0 0 0

 98

Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 0 0 0 0 0 0 44 0 0 0
Trial# 41 42 43 44 45 46 47 48 49 50
 0 0 0 0 10 0 0 0 132 0

Table 20 Runs for 45 sensors with 90 time units

Trial# 1 2 3 4 5 6 7 8 9 10
of
readings 0 0 5 0 0 155 0 71 0 14
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 22 2 71 0 3 4 0 0 0 0
Trial# 21 22 23 24 25 26 27 28 29 30
of
readings 0 0 0 0 0 0 0 41 91 2
Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 93 0 40 89 74 7 0 4 0 0
Trial# 41 42 43 44 45 46 47 48 49 50
 0 0 7 0 4 22 0 0 0 0

Table 21 Runs for 60 sensor with 90 time units

Trial# 1 2 3 4 5 6 7 8 9 10
of
readings 0 0 0 0 0 0 0 0 154 4
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 15 0 0 0 0 0 0 0 0 3
Trial# 21 22 23 24 25 26 27 28 29 30
of
readings 0 0 0 0 0 3 0 0 0 0
Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 0 0 0 0 0 0 0 63 0 0
Trial# 41 42 43 44 45 46 47 48 49 50
 0 57 0 0 0 15 0 0 0 0

Table 22 Runs for 75 sensors with 90 time units

Trial# 1 2 3 4 5 6 7 8 9 10

 99

of
readings 0 0 0 0 0 0 0 5 2 1
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 41 0 5 0 0 0 0 0 0 0
Trial# 21 22 23 24 25 26 27 28 29 30
of
readings 0 0 0 0 0 0 0 0 0 0
Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 0 0 0 0 0 0 0 0 0 0
Trial# 41 42 43 44 45 46 47 48 49 50
 0 5 0 0 0 41 0 0 0 0

Instead of varying the number of sensors, for the experiments shown in Table 23 to Table

26, 75 sensors are used. For each set, queries are submitted at increasing time units.

Table 23 Runs for 75 sensors with 180 time units

Trial# 1 2 3 4 5 6 7 8 9 10
of
readings 0 0 4 0 0 25 0 76 64 56
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 100 0 76 7 0 0 0 0 0 0
Trial# 21 22 23 24 25 26 27 28 29 30
of
readings 0 0 0 0 0 0 0 3 0 0
Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 0 9 10 10 7 11 0 8 0 0
Trial# 41 42 43 44 45 46 47 48 49 50
of
readings 0 7 0 0 0 100 0 0 0 0

Table 24 Runs for 75 sensors with 270 time units

Trial# 1 2 3 4 5 6 7 8 9 10
of
readings 0 0 4 0 0 231 0 498 534 63
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 111 0 498 26 0 5 0 0 0 0
Trial# 21 22 23 24 25 26 27 28 29 30

 100

of
readings 8 0 0 0 0 0 0 3 0 0
Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 14 16 27 14 7 11 0 14 0 0
Trial# 41 42 43 44 45 46 47 48 49 50
 0 21 0 0 0 111 0 0 0 0

Table 25 Runs for 75 sensors with 360 time units

Trial# 1 2 3 4 5 6 7 8 9 10
of
readings 0 0 4 2 0 328 0 559 619 63
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 120 0 559 28 0 5 0 0 0 0
Trial# 21 22 23 24 25 26 27 28 29 30
of
readings 8 0 0 0 0 0 0 39 0 0
Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 15 55 70 185 16 13 0 14 0 0
Trial# 41 42 43 44 45 46 47 48 49 50
 0 45 14 0 0 120 0 0 0 0

Table 26 Runs for 75 sensors with 450 time units

Trial# 1 2 3 4 5 6 7 8 9 10
of
readings 0 0 4 2 2 328 0 559 1306 66
Trial# 11 12 13 14 15 16 17 18 19 20
of
readings 129 1 559 28 0 20 2 0 0 0
Trial# 21 22 23 24 25 26 27 28 29 30
of
readings 13 2 0 0 2 0 0 39 0 0
Trial# 31 32 33 34 35 36 37 38 39 40
of
readings 23 55 81 185 16 16 2 16 3 1
Trial# 41 42 43 44 45 46 47 48 49 50
 0 65 15 1 0 129 2 0 0 0

 101

Bibliography

[1] Dr. Alonso, Eduardo. The City University. Distributed Systems.
http://www.soi.city.ac.uk/~eduardo/ds/ds-motivation.ppt

[2] Armstrong, Edwin and Nigel Hardy. Real-Time Virtual Sensors.

[3] Barr, Larine. Dull, Dirty and Dangerous. Next generation of UAVs hover on the
horizon Military Aerospace Technology Online Edition www.mat-kmi.com

[4] Bonnet, Philippe, Johannes Gehrke, and Praveen Shshadri. Towards Sensor Database
Systems. In Proceedings of the Second International Conference on Mobile Data
Management. Hong Kong, January 2001.

[5] Bonnet, Philippe, Johannes Gehrke, and Praveen Shshadri. Querying the Physical
World.

[6] Borphys, D., P. Verlinde, C. Perneel and M. Acheroy. Multi-level Data Fusion for
the Detection of Targets using multi-spectral Image Sequences. Optical Engineering,
37(2), 1998.

[7] Bradski, Gary and Stephen Grossberg. Fast Learning VIEWNET Architectures for
Recognizing 3-D Objects from Multiple 2-D Views.

[8] Buyya, Rajkumar. High Performance Cluster Computing Architectures and Systems
Volume 1, Prentice Hall PTR, 1999, pp22.

[9] Charkravarthy, U. and J. Minker. Processing multiple queries in database systems.
Database Eng., vol. 5, no. 3, pp.38-44, Sept. 1982.

[10] Chen, Guihai. Lecture 10 through 14: Performance Evaluation.
cs.nju.edu.cn/~gchen/teaching/fpc/lecture10-14.ps accessed Mar 2, 2004.

[11] Chung, Soon M.. Enhanced Tree Quorum Algorithm for Replica Control in
Distributed Database Systems.

[12] Clough, Bruce. UAV Swarming? So What Are Those Swarms, What Are The
Implications, and How Do We Handle Them? Air Force Research Laboratory, Control
Automation.

[13] Cole, Richard, Maxime Crrochemore, Zvi Galil, Leszek Gasieniec, Ramesh
Hariharan, S. Muhukrishnan, K. Park and W. Rytter. Optimally Fast Parallel Algorithms
for Preprocessing and Pattern Matching in One and Two Dimensions. Proc. 34th Annual
IEEE Symposium on Foundations of Computer Science, pp.248-258, 1993.

 102

[14] Corner, Joshua. Swarming reconnaissance using UAVs in a parallel discrete event
simulation. March 2004.

[15] Cougar: The Sensor Network is the Database
http://www.cs.cornell.edu/boom/2002sp/extproj/www.cs.cornell.edu/database/cougar/def
ault.htm accessed Mar 4, 2004.

[16] Coulouris, George, Jean Dollimore, and Tim Kindberg. Distributed Systems
Concepts and Design. Third Edition, 2001. Addison-Wesley. pp.387-409.

[17] Crochemore, Maxime, Leszek Gasieniec, Ramesh Hariharn, S. Muthukrishnan, and
Wojciech Rytter. A Constant Time Optimal Parallel Algorithm for Two-Dimensional
Pattern Matching. SIAM Journal on Computing Vol. 27, No. 3, pp. 668-681, June 1998.

[18] Crossbow Technology Inc. Smarter Sensors in Silicon. MICA2 Wireless
Measurement System.
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/6020-0042-
04_A_MICA2.pdf accessed Feb 29, 2004.

[19] Defense Link U.S. Department of Defense. UAV Roadmap Briefing. March 17,
2003. Unmanned Aerial Vehicles RoadMap.
http://www.acq.osd.mil/usd/uav_roadmap.pdf, accessed Feb 29, 2004.

[20] Ekin, Ahmet, A. Murat Tekalp, and Rajiv Mehrotra. Integrated Semantic-Syntactic
Video Event Modeling For Search and Retrieval.

[21] Ezeife, C.I. and Ken Barker. A Comprehensive Approach to Horizontal Class
Fragmentation in a Distributed Object Based System.

[22] FAS Intelligence Resource Program. Unmanned Aerial Vehicles (UAVs)
http://www.fas.org/irp/program/collect/uav.htm accessed Mar 4, 2004.

[23] Gaudiano, Paolo, Benjamin Shargel, Eric Bonabeau, and Bruce T. Clough. Swarm
Intelligence: a New C2 Paradigm with an Application to Control of Swarms of UAVs

[24] Ghose, Abhishek, Jens Grosskloags, and John Chuang. IEEE Distributed Systems
Online. Mobile Data Management. Resilient Data-Centric Storage in Wireless Sensor
Networks. Ds online exclusive, November 2003.
http://dsonline.computer.org/0311/f/jen.htm accessed Mar 2, 2004.

[25] Grama, Ananth, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to
Parallel Computing, Second Edition, Pearson Education Limited 2003, pp54-59.

[26] Graphs. L. Allison Computer Science. Weighted Directed Graph.
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Graph/

 103

[27] Hardy, N.W., H.R. Nicholls and J.J. Rowland. The design of sensing commands in
the InFACT assembly machine. In: Proc. 23rd Int. Symp. Industrial Robots (ISIR ’92).

[28] Hunter, Jane and Zhimin Zhan. An Indexing and Querying System for Online
Images Based on the PNG Format and Embedded Metadata.
http://archive.dstc.edu.au/RDU/staff/jane-hunter/PNG/paper.html accessed Mar 8, 2004.

[29] Imielinski, Tomasz and Samir Goel. DataSpace: Querying and Monitoring Deeply
Networked Collections in Physical Space. IEEE Personal communications, October
2000.

[30] Institute for Defense Analyses. Technology Assessments – Materials. Low-Cost
Unmanned Aerial Vehicles. Core Research Areas.
http://www.ida.org/IDAnew/Research/materials.html accessed Mar 1, 2004.

[31] Jain, Raj. The art of computer Systems Performance Anayalsis. John Wiley &
Sons, Inc., 1991.

[32] Johnson, David B., David A. Maltz Dynamic Source Routing in Ad Hoc Wireless
Networks. Mobile Computing, Vol 353. Kluwer Academic Publishers, 1996.

[33] Kadrovach, Brian A. A Communications Modeling System for Swarm-based
Sensors. September 2003.

[34] Korona, Zbigniew and Mieczyslaw M. Kokar. Model Based Fusion for Multisensor
Target Recognition. SPIE Proceedings Vol. 2755, paper #2755-19, pp178-189, 1996.

[35] Korona, Zbigniew and Mieczyslaw M. Kokar. Multiresolutional Multisensor Target
Identification.

[36] Krock, Lexi. Spies that fly. Timeline of UAVs. NOVA Science programming on
air and online. PBS Online. http://www.pbs.org/wgbh/nova/spiesfly/uavs.html
accessed Feb 29, 2004.

[37] Le Saux, Bertrand and Nozha Boujemaa. Unsupervised Categorization for Image
Database Overview. INRIA, Imedia Research Group. http://pc-
erato2.iei.pi.cnr.it/lesaux/papers/lesaux-visual02.pdf accessed Mar 3, 2004.

[38] Lu, Zhihong and Kathryn S. McKinley. The Effect of Collection Organization and
Query Locality on Information Retrieval System Performance and Design.

[39] Lu, Zhihong and Kathryn S. McKinley. Partial Collection Replication versus
Caching for Information Retrieval Systems.

 104

[40] McLees, Lea. Learning From Experience: New Pattern Recognition & detection
Technique May Help Radiologists Analyze Digital Mammograms. Jun 11,
1997.http://gtresearchnews.gatech.edu/newsrelease/MAMMOG.html

[41] Melville, Reid and Miguel Visbal. High Fidelity Analysis of UAVs Using Nonlinear
Fluid/Structure Simulation. US Air Force, Air Force Research Laboratory, Air Vehicles
Directorate. DoD Challenge Projects.
http://www.hpcmo.hpc.mil/Htdocs/Challenge/FY03/18.html accessed Mar 1, 2004.

[42] Michalove, Aaron. Amdahl’s Law, Speedup.
http://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html

[43] Mills, Robert. Information Technology & Its Impact on the Warfighter. CSCE 525
Lecture Slides. 01-Intro to IW.ppt

[44] MindSim Corporation, 2000. Decision Making.
http://www.mindsim.com/MindSim/Corporate/OODA.html accessed Mar 1, 2004.

[45] Newman, Ricard J. AIR FORCE MAGAZINE ONLINE JOURNAL OF THE AIR
FORCE ASSOCIATION. War From Afar. August 2003, Vol.86, No. 8.
http://www.afa.org/magazine/Aug2003/0803war.asp

[46] Olson, Clark F. and Daniel P. Huttenlocher. Automatic Target Recognition by
Matching Oriented Edge Pixels.

[47] OODA Loop and Maneuver Warfare.
http://prodevweb.prodev.usna.edu/SeaNav/ns310/Web%20Documents/ppt%20docs/Boyd
_OODA.ppt

[48] Pan, Heping, Nickens Okello, Daniel McMichael and Matthew Roughan. Fuzzy
Causal Probabilistic Networks and Multisensor Data Fusion.

[49] Peck, Michael. National Defense Magazine. Pentagon Unhappy About Drone
Aircraft Reliability Rising mishap rates of unmanned vehicles attributed to rushed
deployment. May 2003. fhttp://www.nationaldefensemagazine.org/article.cfm?Id=1105
accessed Mar 1, 2004.

[50] Perkins, Charles E., Pravin Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers ACM SIGCOMM’94
Conference on Communications Architectures, Protocols and Applications, pp234-244,
1994.

[51] Petrakis, Euripides G.M., Christos Faloutsos, and King-Ip (David) Lin. ImageMap:
An Image Indexing Method Based on Spatial Similarity.

 105

[52] Prabhu, Gurpur M.. Computer Architecture Tutorial. Amdahl’s Law.
http://www.cs.iastate.edu/~prabhu/Tutorial/title.html accessed Mar 2, 2004.

[53] Pucar, Predrag and Par Norberg. Decentralized sensor fusion and support using
multiple models. Proceedings of SPIE vol 3068. Signal Processing, Sensor Fusion, and
Target Recognition VI.

[54] Roos, Robin M. Java™ Data Objects Addison-Wesley 2003, pp1-8.

[55] searchMobileComputing.com Definitions. ad-hoc network
http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci213462,00.html
accessed Feb 29, 2004.

[56] Seetharaman, Guna S.. A Genetic Coding Structure and Algorithms for Image
Segmentation, 1996.

[57] Seinstra, F.J., D. Koelma, J.M. Geusebroek, F.C. Verster and A.W.M. Smeulders.
Efficient Applications in User Transparent Parallel Image Processing.

[58] Silberschatz, Abraham, Henry F. Korth, and S. Sudarshan. Database System
Concepts, Fourth Edition, McGraw-Hill Higher Education 2002, pp735.

[59] Single-Source Shortest Paths
http://www.cs.umbc.edu/~lomonaco/s03/641/slides/single-source-shortest-paths.pdf

[60] Sing-Source Shortest Paths http://www.cs.umsl.edu/~sanjiv/cs278/lectures/sssp.pdf

[61] Soliday, Stephen W. A Genetic Algorithm Model for Mission Planning and
Dynamic Resource Allocation of Airborne Sensors, March 19, 1999.
citeseer.ist.psu.edu/soliday99genetic.html accessed Mar 2, 2204.

[62] Squyres, J., A. Lumsdaine, B McCandless, and R. Stevenson. Cluster-Based Parallel
Image Processing. Journal of Parallel and Distributed Computing, 1996. 74.

[63] Stillger, Michael and Myra Spiliopoulou. Genetic Programming in Database Query
Optimization, 1996.

[64] Strohmaier, Erich. Lecture 14: Performance Modeling of Parallel Applications. UT
CS594 April 21, 1999. www.cs.utk.edu/~dongarra/WEB-PAGES/lect14.ps accessed
Mar 2, 2004.

[65] Tackett, Walter Alden. Genetic Programming for Feature Discovery and Image
Discrimination

[66] The Cornell Database Group. COUGAR: The Network is The Database
hhtp://www.cs.cornell.edu/database/cougar/ accessed Mar 1, 2004.

 106

[67] Toth, Paola and Daniele Vigo. The Vehicle Routing Problem pp1.

[68] Trahan, Michael W., John S. Wagner, Keith M. Stantz, Perry C. Gray, and Rush
Robinett. Swarms of UAVs and Fighter Aircraft. The proceedings of the Second
International Conference on Nonlinear Problems in Aviation and Aerospace, Volume 2,
pp745-752, 1998.

[69] UAV forum. Black Widow.
http://www.uavforum.com/vehicles/developmental/blackwidow.htm accessed Mar 2,
2004.

[70] United Press International. Commentary: Outside View: Looping OODA Loops.
http://quickstart.clari.net/qs_se/webnews/wed/aj/Uoutsideview-lind.RpCO_Da5.html
accessed Mar 1, 2004.

[71] US Marine Corps. MCDP 6 Command & Control.
http://www.tpub.com/content/USMC/mpdpub6/css/mpdpub6_71.htm accessed Mar 1,
2004.

[72] Webopedia. Distributed database.
http://www.webopedia.com/TERM/D/distributed_database.html accessed Mar 1, 2004.

[73] Weldon, Curt. Information Superiority for the 21 st Centurry Battlefiedl, March 20,
1997. 1997 Congressional Hearings Intelligence and Security.
http://www.fas.org/irp/congress/1997_hr/h970320w.htm accessed Mar 5, 2004.

[74] Wolf, J., J. Turek, M. Chen, and P. Yu. The optimal scheduling of multiple queries
in a parallel database machine. Technical Report RC 18595 (81362) 12/17/92, IBM,
1992.

[75] Wolfson, Ouri, Sushil Jajodia, and Yixiu Huang. An adaptive Data Replication
Algorithm.

[76] Yao, Yong and Johanne Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks. ACM SIGMOD Volume 31, Issue 3 (September 2002)
pp9-18.

[77] Yates, R., C. Rose, S. Rajagopalan, and B. Badrinath. Analysis of a Mobile-
Assisted Adaptive Location Management Strategy. Mobile Networks and Applications,
Vol. 1 #2, pp 105-112, 1996.

[78] Yoo, Song Bong, Phillip C.-Y. Sheu. Evalution and Optimization of Query
Programs in an Object-Oriented and Symbolic Information System. IEEE Trans. Knowl.
Data Eng, vol. 5, no. 3, pp479-495, 1003.

 107

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2004
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Mar 2003 – Mar 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
 SWARM BASED IMPLEMENTATION OF A VIRTUAL
DISTRIBUTED DATABASE SYSTEM IN A SENSOR NETWORK

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
If funded, enter ENR #2001001
5e. TASK NUMBER

6. AUTHOR(S)

Lee, Wen Chian

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 Wright Patterson AFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCE/ENG/04-06

10. SPONSOR/MONITOR’S
ACRONYM(S)

AFOSR/Software and Systems

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFRL/ Information Directorate
 Attn: Bob Ewing, Ph.D.
 Air Force Research Laboratory Comm: (937) 255-6653x3592
 WPAFB, OH 45433 e-mail: Robert.Ewing@wpafb.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The deployment of unmanned aerial vehicles (UAVs) in recent military operations has received much media attention.
Their success in carrying out surveillance and combat missions in sensitive areas has been trumpeted. An area of intense research
has been on controlling a group of small-sized UAVs to carry out reconnaissance missions normally undertaken by large UAVs
such as Predator or Global Hawk. A control strategy for coordinating the UAV movements of such a group of UAVs adopts the
bio-inspired swarm model to produce autonomous group behavior. This research proposes establishing a distributed database
system on a group of swarming UAVs, providing for data storage during a reconnaissance mission. A distributed database system
model is simulated treating each UAV as a distributed database site connected by a wireless network. In this model, each UAV
carries a sensor and communicates to a command center when queried. Drawing equivalence to a sensor network, the network of
UAVs poses as a dynamic ad-hoc sensor network. The distributed database system based on a swarm of UAVs is tested against a
set of reconnaissance test suites with respect to evaluating system performance. The design of experiments focuses on the effects
of varying the query input and types of swarming UAVs on overall system performance. The results show that the topology of
the UAVs has a distinct impact on the output of the sensor database. The experiments measuring system delays also confirm the
expectation that in a distributed system, inter-node communication costs outweigh processing costs.
15. SUBJECT TERMS

Distributed Database, Swarm UAVs
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON

Dr. Gary B. Lamont
a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

U

18. NUMBER
 OF
 PAGES

119

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565 x4118; e-mail: Gary.Lamont@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

